-
3
-
-
84855608533
-
Optimal topological simplification of discrete functions on surfaces
-
Bauer, U., Lange, C., Wardetzky, M.: Optimal topological simplification of discrete functions on surfaces. Discrete & Computational Geometry 47(2), 1-31
-
Discrete & Computational Geometry
, vol.47
, Issue.2
, pp. 1-31
-
-
Bauer, U.1
Lange, C.2
Wardetzky, M.3
-
4
-
-
78149238074
-
Computing robustness and persistence for images
-
Bendich, P., Edelsbrunner, H., Kerber, M.: Computing robustness and persistence for images. Proc. -IEEE Conf. Inf. Vis. 16, 1251-1260 (2010)
-
(2010)
Proc. -IEEE Conf. Inf. Vis
, vol.16
, pp. 1251-1260
-
-
Bendich, P.1
Edelsbrunner, H.2
Kerber, M.3
-
5
-
-
0001309062
-
On discrete morse functions and combinatorial decompositions
-
Chari, M.K.: On discrete Morse functions and combinatorial decompositions. Discrete Math. 217(1-3), 101-113 (2000)
-
(2000)
Discrete Math
, vol.217
, Issue.1-3
, pp. 101-113
-
-
Chari, M.K.1
-
8
-
-
33846839317
-
Stability of persistence diagrams
-
Cohen-Steiner, D., Edelsbrunner, H., Harer, J.: Stability of persistence diagrams. Discrete Comput. Geom. 37, 103-120 (2007)
-
(2007)
Discrete Comput. Geom
, vol.37
, pp. 103-120
-
-
Cohen-Steiner, D.1
Edelsbrunner, H.2
Harer, J.3
-
10
-
-
0036883297
-
Topological persistence and simplification
-
DOI 10.1007/s00454-002-2885-2
-
Edelsbrunner, H., Letscher, D., Zomorodian, A.: Topological persistence and simplification. Discrete Comput. Geom. 28(4), 511-533 (2002) (Pubitemid 36161396)
-
(2002)
Discrete and Computational Geometry
, vol.28
, Issue.4
, pp. 511-533
-
-
Edelsbrunner, H.1
Letscher, D.2
Zomorodian, A.3
-
11
-
-
0002910255
-
Morse theory for cell complexes
-
DOI 10.1006/aima.1997.1650, PII S0001870897916509
-
Forman, R.: Morse theory for cell complexes. Adv. Math. 134, 90-145 (1998) (Pubitemid 128347573)
-
(1998)
Advances in Mathematics
, vol.134
, Issue.1
, pp. 90-145
-
-
Forman, R.1
-
12
-
-
18144420427
-
A user's guide to discrete morse theory
-
Forman, R.: A user's guide to discrete Morse theory. In: Seminaire Lotharingien de Combinatoire, vol. B48c, pp. 1-35 (2002)
-
(2002)
Seminaire Lotharingien de Combinatoire
, vol.B48C
, pp. 1-35
-
-
Forman, R.1
-
13
-
-
84874934556
-
Efficient computation of a hierarchy of discrete 3d gradient vector fields
-
Peikert, R., Hauser, H., Carr, H., Fuchs, R. (eds.), Zürich, Switzerland, April 4-6, Springer, Berlin
-
Günther, D., Reininghaus, J., Prohaska, S., Weinkauf, T., Hege, H.C.: Efficient computation of a hierarchy of discrete 3d gradient vector fields. In: Peikert, R., Hauser, H., Carr, H., Fuchs, R. (eds.) Topological Methods in Data Analysis and Visualization. II. Mathematics and Visualization (TopoInVis 2011), Zürich, Switzerland, April 4-6, pp. 15-30. Springer, Berlin (2012)
-
(2012)
Topological Methods in Data Analysis and Visualization. II. Mathematics and Visualization (TopoInVis 2011
, pp. 15-30
-
-
Günther, D.1
Reininghaus, J.2
Prohaska, S.3
Weinkauf, T.4
Hege, H.C.5
-
14
-
-
84857175890
-
Memory efficient computation of persistent homology for 3d image data using discrete morse theory
-
Lewiner, T., Torres, R. (eds.), Maceió, Los Alamitos, IEEE Press, New York
-
Günther, D., Reininghaus, J., Wagner, H., Hotz, I.: Memory efficient computation of persistent homology for 3D image data using discrete Morse theory. In: Lewiner, T., Torres, R. (eds.) Proceedings of Conference on Graphics, Patterns and Images (SIBGRAPI), Maceió, Los Alamitos, vol. 24, pp. 25-32. IEEE Press, New York (2011)
-
(2011)
Proceedings of Conference on Graphics, Patterns and Images (SIBGRAPI
, vol.24
, pp. 25-32
-
-
Günther, D.1
Reininghaus, J.2
Wagner, H.3
Hotz, I.4
-
15
-
-
54949114303
-
A practical approach to morse-smale complex computation: Scalability and generality
-
Gyulassy, A., Bremer, P.T., Hamann, B., Pascucci, V.: A practical approach to Morse-Smale complex computation: scalability and generality. IEEE Trans. Vis. Comput. Graph. 14, 1619-1626 (2008)
-
(2008)
IEEE Trans. Vis. Comput. Graph
, vol.14
, pp. 1619-1626
-
-
Gyulassy, A.1
Bremer, P.T.2
Hamann, B.3
Pascucci, V.4
-
16
-
-
0004193355
-
-
Cambridge University Press, Cambridge
-
Hatcher, A.: Algebraic Topology. Cambridge University Press, Cambridge (2002)
-
(2002)
Algebraic Topology
-
-
Hatcher, A.1
-
17
-
-
10844236239
-
-
Springer, Berlin
-
Kaczynski, T., Mischaikow, K., Mrozek, M.: Computational Homology. Applied Math. Sciences, vol. 157. Springer, Berlin (2004)
-
(2004)
Computational Homology. Applied Math. Sciences
, vol.157
-
-
Kaczynski, T.1
Mischaikow, K.2
Mrozek, M.3
-
19
-
-
84867942371
-
Optimal discrete morse functions for 2-manifolds
-
Lewiner, T., Lopes, H., Tavares, G.: Optimal discrete Morse functions for 2-manifolds. Comput. Geom. 26(3), 221-233 (2003)
-
(2003)
Comput. Geom
, vol.26
, Issue.3
, pp. 221-233
-
-
Lewiner, T.1
Lopes, H.2
Tavares, G.3
-
21
-
-
79960165023
-
Zigzag persistent homology in matrix multiplication time
-
ACM New York
-
Milosavljevi'c, N., Morozov, D., Skraba, P.: Zigzag persistent homology in matrix multiplication time. In: Proceedings of the 27th Annual ACM Symposium on Computational Geometry (SoCG '11), pp. 216-225. ACM, New York (2011)
-
(2011)
Proceedings of the 27th Annual ACM Symposium on Computational Geometry (SoCG '11
, pp. 216-225
-
-
Milosavljevi'c, N.1
Morozov, D.2
Skraba, P.3
-
22
-
-
78149252299
-
Persistence algorithm takes cubic time in the worst case
-
Durhmam
-
Morozov, D.: Persistence algorithm takes cubic time in the worst case. In: BioGeometry News. Duke Computer Science, Durhmam (2005)
-
(2005)
BioGeometry News. Duke Computer Science
-
-
Morozov, D.1
-
23
-
-
78049247046
-
Coreduction homology algorithm for inclusions and persistent homology
-
Mrozek, M., Wanner, T.: Coreduction homology algorithm for inclusions and persistent homology. Comput.Math. Appl. 60, 2812-2833 (2010)
-
(2010)
Comput. Math. Appl
, vol.60
, pp. 2812-2833
-
-
Mrozek, M.1
Wanner, T.2
-
24
-
-
78149351511
-
Tadd: A computational framework for data analysis using discrete morse theory
-
Springer, Berlin
-
Reininghaus, J., Günther, D., Hotz, I., Prohaska, S., Hege, H.C., TADD: A computational framework for data analysis using discrete Morse theory. In: Mathematical Software (ICMS 2010), pp. 198-208. Springer, Berlin (2010)
-
(2010)
Mathematical Software (ICMS 2010
, pp. 198-208
-
-
Reininghaus, J.1
Günther, D.2
Hotz, I.3
Prohaska, S.4
Hege, H.C.5
-
25
-
-
79959524693
-
Theory and algorithms for constructing discrete morse complexes from grayscale digital images
-
Robins, V., Wood, P., Sheppard, A.: Theory and algorithms for constructing discrete Morse complexes from grayscale digital images. IEEE Trans. Pattern Anal. Mach. Intell. 33(8), 1646-1658 (2011)
-
(2011)
IEEE Trans. Pattern Anal. Mach. Intell
, vol.33
, Issue.8
, pp. 1646-1658
-
-
Robins, V.1
Wood, P.2
Sheppard, A.3
-
26
-
-
84869029354
-
-
Röttger, S.: http://www9.informatik.uni-erlangen.de/External/vollib/
-
-
-
Röttger, S.1
-
27
-
-
84864014622
-
Efficient computation of persistent homology for cubical data
-
Peikert, R., Hauser, H., Carr, H., Fuchs, R. (eds.), Zürich, Switzerland, April 4-6, Springer, Berlin
-
Wagner, H., Chen, C., Vucini, E.: Efficient computation of persistent homology for cubical data. In: Peikert, R., Hauser, H., Carr, H., Fuchs, R. (eds.) Topological Methods in Data Analysis and Visualization. II. Mathematics and Visualization (TopoInVis 2011), Zürich, Switzerland, April 4-6, pp. 91-108. Springer, Berlin (2012)
-
(2012)
Topological Methods in Data Analysis and Visualization. II. Mathematics and Visualization (TopoInVis 2011
, pp. 91-108
-
-
Wagner, H.1
Chen, C.2
Vucini, E.3
|