-
1
-
-
0036883297
-
Topological persistence and simplification
-
DOI 10.1007/s00454-002-2885-2
-
H. Edelsbrunner, D. Letscher, and A. Zomorodian. Topological persistence and simplification. Discrete Comput. Geom., 28:511-533, 2002. (Pubitemid 36161396)
-
(2002)
Discrete and Computational Geometry
, vol.28
, Issue.4
, pp. 511-533
-
-
Edelsbrunner, H.1
Letscher, D.2
Zomorodian, A.3
-
3
-
-
33846839317
-
Stability of persistence diagrams
-
D. Cohen-Steiner, H. Edelsbrunner, and J. Harer. Stability of persistence diagrams. Discrete and Computational Geometry, 37(1):103-120, 2007.
-
(2007)
Discrete and Computational Geometry
, vol.37
, Issue.1
, pp. 103-120
-
-
Cohen-Steiner, D.1
Edelsbrunner, H.2
Harer, J.3
-
11
-
-
84968505384
-
Triangular factorization and inversion by fast matrix multiplication
-
J. R. Bunch and J.E. Hopcroft. Triangular Factorization and Inversion by Fast Matrix Multiplication. Mathematics of Computation, 28+(125):231-236, 1974.
-
(1974)
Mathematics of Computation
, vol.28
, Issue.125
, pp. 231-236
-
-
Bunch, J.R.1
Hopcroft, J.E.2
-
14
-
-
0027806401
-
An incremental algorithm for Betti numbers of simplicial complexes
-
New York, NY, USA, ACM
-
C. J. A. Delfinado and H. Edelsbrunner. An incremental algorithm for Betti numbers of simplicial complexes. In SCG '93: Proceedings of the ninth annual symposium on Computational geometry, pages 232-239, New York, NY, USA, 1993. ACM.
-
(1993)
SCG '93: Proceedings of the Ninth Annual Symposium on Computational Geometry
, pp. 232-239
-
-
Delfinado, C.J.A.1
Edelsbrunner, H.2
-
16
-
-
58849140892
-
Extending persistence using Poincarè and lefschetz duality
-
D. Cohen-Steiner, H. Edelsbrunner, and J. Harer. Extending Persistence Using Poincarè and Lefschetz Duality. Found. Comput. Math., 9(1):79-103, 2009.
-
(2009)
Found. Comput. Math.
, vol.9
, Issue.1
, pp. 79-103
-
-
Cohen-Steiner, D.1
Edelsbrunner, H.2
Harer, J.3
-
17
-
-
70349159494
-
Persistent homology for kernels, images, and cokernels
-
Philadelphia, PA, USA. Society for Industrial and Applied Mathematics
-
D. Cohen-Steiner, H. Edelsbrunner, J. Harer, and D. Morozov. Persistent homology for kernels, images, and cokernels. In SODA '09: Proceedings of the twentieth Annual ACM-SIAM Symposium on Discrete Algorithms, pages 1011-1020, Philadelphia, PA, USA, 2009. Society for Industrial and Applied Mathematics.
-
(2009)
SODA '09: Proceedings of the Twentieth Annual ACM-SIAM Symposium on Discrete Algorithms
, pp. 1011-1020
-
-
Cohen-Steiner, D.1
Edelsbrunner, H.2
Harer, J.3
Morozov, D.4
-
19
-
-
41949092026
-
Homology algorithm based on acyclic subspace
-
DOI 10.1016/j.camwa.2007.08.044, PII S0898122107006943
-
M. Mrozek, P. Pilarczyk, and N. Zelazna. Homology algorithm based on acyclic subspace. Comput. Math. Appl., 55(11):2395-2412, 2008. (Pubitemid 351508386)
-
(2008)
Computers and Mathematics with Applications
, vol.55
, Issue.11
, pp. 2395-2412
-
-
Mrozek, M.1
Pilarczyk, P.2
Zelazna, N.3
-
20
-
-
84867942371
-
Optimal discrete Morse functions for 2-manifolds
-
T. Lewiner, H. Lopes, and G. Tavares. Optimal discrete Morse functions for 2-manifolds. Comput. Geom. Theory Appl., 26(3):221-233, 2003.
-
(2003)
Comput. Geom. Theory Appl.
, vol.26
, Issue.3
, pp. 221-233
-
-
Lewiner, T.1
Lopes, H.2
Tavares, G.3
-
21
-
-
30244548249
-
A computationally intractable problem on simplicial complexes
-
DOI 10.1016/0925-7721(95)00015-1
-
Ö. Eǧecioǧlu and T.F. Gonzalez. A computationally intractable problem on simplicial complexes. Comput. Geom. Theory Appl., 6(2):85-98, 1996. (Pubitemid 126375224)
-
(1996)
Computational Geometry: Theory and Applications
, vol.6
, Issue.2
, pp. 85-98
-
-
Egecioglu, O.1
Gonzalez, T.F.2
-
23
-
-
77954929689
-
The tidy set: A minimal simplicial set for computing homology of clique complexes
-
A. Zomorodian. The Tidy Set: A Minimal Simplicial Set for Computing Homology of Clique Complexes. In Proc. ACM Symposium of Computational Geometry, pages 257-266, 2010.
-
(2010)
Proc. ACM Symposium of Computational Geometry
, pp. 257-266
-
-
Zomorodian, A.1
-
24
-
-
34250487811
-
Gaussian elimination is not optimal
-
V. Strassen. Gaussian Elimination is not Optimal. Numer. Math., 13:354-356, 1969.
-
(1969)
Numer. Math.
, vol.13
, pp. 354-356
-
-
Strassen, V.1
-
25
-
-
85023205150
-
Matrix multiplication via arithmetic progressions
-
D. Coppersmith and S. Winograd. Matrix multiplication via arithmetic progressions. J. Symb. Comput., 9(3):251-280, 1990.
-
(1990)
J. Symb. Comput.
, vol.9
, Issue.3
, pp. 251-280
-
-
Coppersmith, D.1
Winograd, S.2
-
26
-
-
33748037756
-
Group-theoretic algorithms for matrix multiplication
-
DOI 10.1109/SFCS.2005.39, 1530730, Proceedings - 46th Annual IEEE Symposium on Foundations of Computer Science, FOCS 2005
-
H. Cohn, R. Kleinberg, B. Szegedy, and C. Umans. Group-theoretic Algorithms for Matrix Multiplication. In FOCS '05: Proceedings of the Symposium on Foundations of Computer Science, pages 379-388, Washington, DC, USA, 2005. IEEE Computer Society. (Pubitemid 44375748)
-
(2005)
Proceedings - Annual IEEE Symposium on Foundations of Computer Science, FOCS
, vol.2005
, pp. 379-388
-
-
Cohn, H.1
Kleinberg, R.2
Szegedy, B.3
Umans, C.4
|