메뉴 건너뛰기




Volumn , Issue , 2011, Pages 216-225

Zigzag persistent homology in matrix multiplication time

Author keywords

Matrix multiplication; Zigzag persistent homology

Indexed keywords

ALGEBRAIC STRUCTURES; MATRIX MULTIPLICATION; MATRIX MULTIPLICATION TIME; PERSISTENT HOMOLOGY; RUNNING TIME; SIMPLICIAL COMPLEX; WINOGRAD; WORST CASE;

EID: 79960165023     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1145/1998196.1998229     Document Type: Conference Paper
Times cited : (170)

References (27)
  • 11
    • 84968505384 scopus 로고
    • Triangular factorization and inversion by fast matrix multiplication
    • J. R. Bunch and J.E. Hopcroft. Triangular Factorization and Inversion by Fast Matrix Multiplication. Mathematics of Computation, 28+(125):231-236, 1974.
    • (1974) Mathematics of Computation , vol.28 , Issue.125 , pp. 231-236
    • Bunch, J.R.1    Hopcroft, J.E.2
  • 16
    • 58849140892 scopus 로고    scopus 로고
    • Extending persistence using Poincarè and lefschetz duality
    • D. Cohen-Steiner, H. Edelsbrunner, and J. Harer. Extending Persistence Using Poincarè and Lefschetz Duality. Found. Comput. Math., 9(1):79-103, 2009.
    • (2009) Found. Comput. Math. , vol.9 , Issue.1 , pp. 79-103
    • Cohen-Steiner, D.1    Edelsbrunner, H.2    Harer, J.3
  • 19
    • 41949092026 scopus 로고    scopus 로고
    • Homology algorithm based on acyclic subspace
    • DOI 10.1016/j.camwa.2007.08.044, PII S0898122107006943
    • M. Mrozek, P. Pilarczyk, and N. Zelazna. Homology algorithm based on acyclic subspace. Comput. Math. Appl., 55(11):2395-2412, 2008. (Pubitemid 351508386)
    • (2008) Computers and Mathematics with Applications , vol.55 , Issue.11 , pp. 2395-2412
    • Mrozek, M.1    Pilarczyk, P.2    Zelazna, N.3
  • 20
    • 84867942371 scopus 로고    scopus 로고
    • Optimal discrete Morse functions for 2-manifolds
    • T. Lewiner, H. Lopes, and G. Tavares. Optimal discrete Morse functions for 2-manifolds. Comput. Geom. Theory Appl., 26(3):221-233, 2003.
    • (2003) Comput. Geom. Theory Appl. , vol.26 , Issue.3 , pp. 221-233
    • Lewiner, T.1    Lopes, H.2    Tavares, G.3
  • 21
    • 30244548249 scopus 로고    scopus 로고
    • A computationally intractable problem on simplicial complexes
    • DOI 10.1016/0925-7721(95)00015-1
    • Ö. Eǧecioǧlu and T.F. Gonzalez. A computationally intractable problem on simplicial complexes. Comput. Geom. Theory Appl., 6(2):85-98, 1996. (Pubitemid 126375224)
    • (1996) Computational Geometry: Theory and Applications , vol.6 , Issue.2 , pp. 85-98
    • Egecioglu, O.1    Gonzalez, T.F.2
  • 22
    • 33847612091 scopus 로고    scopus 로고
    • Computing optimal Morse matchings
    • DOI 10.1137/S0895480104445885
    • M. Joswig and M.E. Pfetsch. Computing Optimal Morse Matchings. SIAM J. Discret. Math., 20(1):11-25, 2006. (Pubitemid 46352081)
    • (2006) SIAM Journal on Discrete Mathematics , vol.20 , Issue.1 , pp. 11-25
    • Joswig, M.1    Pfetsch, M.E.2
  • 23
    • 77954929689 scopus 로고    scopus 로고
    • The tidy set: A minimal simplicial set for computing homology of clique complexes
    • A. Zomorodian. The Tidy Set: A Minimal Simplicial Set for Computing Homology of Clique Complexes. In Proc. ACM Symposium of Computational Geometry, pages 257-266, 2010.
    • (2010) Proc. ACM Symposium of Computational Geometry , pp. 257-266
    • Zomorodian, A.1
  • 24
    • 34250487811 scopus 로고
    • Gaussian elimination is not optimal
    • V. Strassen. Gaussian Elimination is not Optimal. Numer. Math., 13:354-356, 1969.
    • (1969) Numer. Math. , vol.13 , pp. 354-356
    • Strassen, V.1
  • 25
    • 85023205150 scopus 로고
    • Matrix multiplication via arithmetic progressions
    • D. Coppersmith and S. Winograd. Matrix multiplication via arithmetic progressions. J. Symb. Comput., 9(3):251-280, 1990.
    • (1990) J. Symb. Comput. , vol.9 , Issue.3 , pp. 251-280
    • Coppersmith, D.1    Winograd, S.2
  • 26
    • 33748037756 scopus 로고    scopus 로고
    • Group-theoretic algorithms for matrix multiplication
    • DOI 10.1109/SFCS.2005.39, 1530730, Proceedings - 46th Annual IEEE Symposium on Foundations of Computer Science, FOCS 2005
    • H. Cohn, R. Kleinberg, B. Szegedy, and C. Umans. Group-theoretic Algorithms for Matrix Multiplication. In FOCS '05: Proceedings of the Symposium on Foundations of Computer Science, pages 379-388, Washington, DC, USA, 2005. IEEE Computer Society. (Pubitemid 44375748)
    • (2005) Proceedings - Annual IEEE Symposium on Foundations of Computer Science, FOCS , vol.2005 , pp. 379-388
    • Cohn, H.1    Kleinberg, R.2    Szegedy, B.3    Umans, C.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.