-
1
-
-
84855321124
-
Solar cell efficiency tables (Version 39)
-
M. A. Green, K. Emery, Y. Hishikawa, W. Warta, and E. D. Dunlop, “Solar cell efficiency tables (version 39),” Prog. Photovolt. Res. Appl. 20(1), 12-20 (2012).
-
(2012)
Prog. Photovolt. Res. Appl.
, vol.20
, Issue.1
, pp. 12-20
-
-
Green, M.A.1
Emery, K.2
Hishikawa, Y.3
Warta, W.4
Dunlop, E.D.5
-
2
-
-
22744450660
-
Silicon photovoltaic modules: A brief history of the first 50 years
-
M. A. Green, “Silicon photovoltaic modules: a brief history of the first 50 years,” Prog. Photovolt. Res. Appl. 13(5), 447-455 (2005).
-
(2005)
Prog. Photovolt. Res. Appl
, vol.13
, Issue.5
, pp. 447-455
-
-
Green, M.A.1
-
3
-
-
33744986005
-
A review on highly ordered, vertically oriented TiO2 nanotube arrays: Fabrication, material properties, and solar energy applications
-
2nanotube arrays: fabrication, material properties, and solar energy applications,” Sol. Energy Mater. Sol. Cells 90(14), 2011-2075 (2006).
-
(2006)
Sol. Energy Mater. Sol. Cells
, vol.90
, Issue.14
, pp. 2011-2075
-
-
Mor, G.K.1
Varghese, O.K.2
Paulose, M.3
Shankar, K.4
Grimes, C.A.5
-
4
-
-
42249114488
-
19.9%-efficient ZnO/CdS/CuInGaSe2 solar cell with 81.2% fill factor
-
I. Repins, M. A. Contreras, B. Egaas, C. DeHart, J. Scharf, C. L. Perkins, B. To, and R. Noufi, “19.9%-efficient ZnO/CdS/CuInGaSe2 solar cell with 81.2% fill factor,” Prog. Photovolt. Res. Appl. 16(3), 235-239 (2008).
-
(2008)
Prog. Photovolt. Res. Appl.
, vol.16
, Issue.3
, pp. 235-239
-
-
Repins, I.1
Contreras, M.A.2
Egaas, B.3
Dehart, C.4
Scharf, J.5
Perkins, C.L.6
To, B.7
Noufi, R.8
-
5
-
-
64549121548
-
Organic tandem solar cells: A review, Energy Environ
-
T. Ameri, G. Dennler, C. Lungenschmied, and C. J. Brabec, “Organic tandem solar cells: a review,” Energy Environ. Sci. 2(4), 347-363 (2009).
-
(2009)
Sci.
, vol.2
, Issue.4
, pp. 347-363
-
-
Ameri, T.1
Dennler, G.2
Lungenschmied, C.3
Brabec, C.J.4
-
6
-
-
34248396741
-
Conjugated polymer-based organic solar cells
-
S. Gunes, H. Neugebauer, and N. S. Sariciftci, “Conjugated polymer-based organic solar cells,” Chem. Rev. 107(4), 1324-1338 (2007).
-
(2007)
Chem. Rev
, vol.107
, Issue.4
, pp. 1324-1338
-
-
Gunes, S.1
Neugebauer, H.2
Sariciftci, N.S.3
-
7
-
-
84862281822
-
Design of nanostructured solar cells using coupled optical and electrical modeling
-
M. G. Deceglie, V. E. Ferry, A. P. Alivisatos, and H. A. Atwater, “Design of nanostructured solar cells using coupled optical and electrical modeling,” Nano Lett. 12(6), 2894-2900 (2012).
-
(2012)
Nano Lett
, vol.12
, Issue.6
, pp. 2894-2900
-
-
Deceglie, M.G.1
Ferry, V.E.2
Alivisatos, A.P.3
Atwater, H.A.4
-
8
-
-
84856261339
-
Plasmonic light trapping in thin-film Si solar cells
-
P. Spinelli, V. E. Ferry, J. van de Groep, M. van Lare, M. A. Verschuuren, R. E. I. Schropp, H. A. Atwater, and A. Polman, “Plasmonic light trapping in thin-film Si solar cells,” J. Opt. 14(2), 024002 (2012).
-
(2012)
J. Opt.
, vol.14
, Issue.2
, pp. 24002
-
-
Spinelli, P.1
Ferry, V.E.2
Van De Groep, J.3
Van Lare, M.4
Verschuuren, M.A.5
Schropp, R.E.I.6
Atwater, H.A.7
Polman, A.8
-
9
-
-
77957058116
-
Simulation of energy conversion efficiency of a solar cell with gratings
-
S. C. Kim and I. Sohn, “Simulation of energy conversion efficiency of a solar cell with gratings,” J. Opt. Soc. Kor. 14(2), 142-145 (2010).
-
(2010)
J. Opt. Soc. Kor.
, vol.14
, Issue.2
, pp. 142-145
-
-
Kim, S.C.1
Sohn, I.2
-
10
-
-
77249099338
-
Plasmonics for improved photovoltaic devices
-
H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater. 9(3), 205-213 (2010).
-
(2010)
Nat. Mater.
, vol.9
, Issue.3
, pp. 205-213
-
-
Atwater, H.A.1
Polman, A.2
-
11
-
-
0036642216
-
General transfer-matrix method for optical multilayer systems with coherent, partially coherent, and incoherent interference
-
C. C. Katsidis and D. I. Siapkas, “General transfer-matrix method for optical multilayer systems with coherent, partially coherent, and incoherent interference,” Appl. Opt. 41(19), 3978-3987 (2002).
-
(2002)
Appl. Opt.
, vol.41
, Issue.19
, pp. 3978-3987
-
-
Katsidis, C.C.1
Siapkas, D.I.2
-
12
-
-
30844447699
-
Generalized matrix method for calculation of internal light energy flux in mixed coherent and incoherent multilayers
-
E. Centurioni, “Generalized matrix method for calculation of internal light energy flux in mixed coherent and incoherent multilayers,” Appl. Opt. 44(35), 7532-7539 (2005).
-
(2005)
Appl. Opt.
, vol.44
, Issue.35
, pp. 7532-7539
-
-
Centurioni, E.1
-
13
-
-
78649688863
-
Ransfer-matrix formalism for the calculation of optical response in multilayer systems: From coherent to incoherent interference
-
M. C. Troparevsky, A. S. Sabau, A. R. Lupini, and Z. Zhang, “Transfer-matrix formalism for the calculation of optical response in multilayer systems: from coherent to incoherent interference,” Opt. Express 18(24), 24715-24721 (2010).
-
(2010)
Opt. Express
, vol.18
, Issue.24
, pp. 24715-24721
-
-
Troparevsky, M.C.1
Sabau, A.S.2
Lupini, A.R.3
Zhang, Z.4
-
14
-
-
82955202318
-
Optical modeling and analysis of organic solar cells with coherent multilayers and Incoherent glass substrate using generalized transfer matrix method
-
S. Jung, K.-Y. Kim, Y.-I. Lee, J.-H. Youn, H.-T. Moon, J. Jang, and J. Kim, “Optical modeling and analysis of organic solar cells with coherent multilayers and Incoherent glass substrate using generalized transfer matrix method,” Jpn. J. Appl. Phys. 50(12), 122-301 (2011).
-
(2011)
Jpn. J. Appl. Phys
, vol.50
, Issue.12
, pp. 122-301
-
-
Jung, S.1
Kim, K.-Y.2
Lee, Y.-I.3
Youn, J.-H.4
Moon, H.-T.5
Jang, J.6
Kim, J.7
-
15
-
-
0034513125
-
Coherent, partially coherent and incoherent light absorption in thin-film multilayer structures
-
J. S. C. Prentice, “Coherent, partially coherent and incoherent light absorption in thin-film multilayer structures,” J. Phys. D Appl. Phys. 33(24), 3139-3145 (2000).
-
(2000)
J. Phys. D Appl. Phys.
, vol.33
, Issue.24
, pp. 3139-3145
-
-
Prentice, J.S.C.1
-
16
-
-
0032667049
-
Optical generation rate of electron-hole pairs in multilayer thin-film photovoltaic cells
-
J. S. C. Prentice, “Optical generation rate of electron-hole pairs in multilayer thin-film photovoltaic cells,” J. Phys. D Appl. Phys. 32(17), 2146-2150 (1999).
-
(1999)
J. Phys. D Appl. Phys.
, vol.32
, Issue.17
, pp. 2146-2150
-
-
Prentice, J.S.C.1
-
17
-
-
0029307028
-
Formulation for stable and efficient implementation of the rigorous coupled-wave analysis of binary gratings
-
M. G. Moharam, E. B. Grann, D. A. Pommet, and T. K. Gaylord, “Formulation for stable and efficient implementation of the rigorous coupled-wave analysis of binary gratings,” J. Opt. Soc. Am. A 12(5), 1068 (1995).
-
(1995)
J. Opt. Soc. Am. A
, vol.12
, Issue.5
, pp. 1068
-
-
Moharam, M.G.1
Grann, E.B.2
Pommet, D.A.3
Gaylord, T.K.4
-
18
-
-
0029306568
-
Stable implementation of the rigorous coupled-wave analysis for surface-relief gratings: Enhanced transmittance matrix approach
-
M. G. Moharam, D. A. Pommet, E. B. Grann, and T. K. Gaylord, “Stable implementation of the rigorous coupled-wave analysis for surface-relief gratings: enhanced transmittance matrix approach,” J. Opt. Soc. Am. A 12(5), 1077 (1995).
-
(1995)
J. Opt. Soc. Am. A
, vol.12
, Issue.5
, pp. 1077
-
-
Moharam, M.G.1
Pommet, D.A.2
Grann, E.B.3
Gaylord, T.K.4
-
19
-
-
36749047582
-
Extended scattering-matrix method for efficient full parallel implementation of rigorous coupled-wave analysis
-
H. Kim, I.-M. Lee, and B. Lee, “Extended scattering-matrix method for efficient full parallel implementation of rigorous coupled-wave analysis,” J. Opt. Soc. Am. A 24(8), 2313-2327 (2007).
-
(2007)
J. Opt. Soc. Am. A
, vol.24
, Issue.8
, pp. 2313-2327
-
-
Kim, H.1
Lee, I.-M.2
Lee, B.3
-
21
-
-
84859354780
-
A transmission line model for the optical simulation of multilayer structures and its application for oblique illumination of an organic solar cell with anisotropic extinction coefficient
-
N. A. Stathopoulos, L. C. Palilis, S. R. Yesayan, S. P. Savaidis, M. Vasilopoulou, and P. Argitis, “A transmission line model for the optical simulation of multilayer structures and its application for oblique illumination of an organic solar cell with anisotropic extinction coefficient,” J. Appl. Phys. 110(11), 114-506 (2011).
-
(2011)
J. Appl. Phys
, vol.110
, Issue.11
, pp. 114-506
-
-
Stathopoulos, N.A.1
Palilis, L.C.2
Yesayan, S.R.3
Savaidis, S.P.4
Vasilopoulou, M.5
Argitis, P.6
-
23
-
-
0003881170
-
-
2nd ed., McGraw-Hill
-
M. Bass, ed., Handbook of Optics, 2nd ed., vol. 2 (McGraw-Hill, 1994).
-
(1994)
Handbook of Optics
, vol.2
-
-
Bass, M.1
-
24
-
-
0003881170
-
-
3rd ed., McGraw-Hill
-
M. Bass, ed., Handbook of Optics, 3rd ed., vol. 4 (McGraw-Hill, 2009).
-
(2009)
Handbook of Optics
, vol.4
-
-
Bass, M.1
|