-
1
-
-
0028359362
-
Predator-prey dynamics in models of prey dispersal in two-patch environments
-
10.1016/0025-5564(94)90038-8 1281745 ZBL0793.92014
-
Kuang Y., Takeuchi Y., Predator-prey dynamics in models of prey dispersal in two-patch environments. Mathematical Biosciences 1994 120 1 77 98 10.1016/0025-5564(94)90038-8 1281745 ZBL0793.92014
-
(1994)
Mathematical Biosciences
, vol.120
, Issue.1
, pp. 77-98
-
-
Kuang, Y.1
Takeuchi, Y.2
-
2
-
-
70349785039
-
Global-stability problem for coupled systems of differential equations on networks
-
10.1016/j.jde.2009.09.003 2557892 ZBL1190.34063
-
Li M. Y., Shuai Z., Global-stability problem for coupled systems of differential equations on networks. Journal of Differential Equations 2010 248 1 1 20 10.1016/j.jde.2009.09.003 2557892 ZBL1190.34063
-
(2010)
Journal of Differential Equations
, vol.248
, Issue.1
, pp. 1-20
-
-
Li, M.Y.1
Shuai, Z.2
-
3
-
-
38249035528
-
Global stability and periodic orbits for two-patch predator-prey diffusion-delay models
-
10.1016/0025-5564(87)90051-4 910243 ZBL0634.92017
-
Beretta E., Solimano F., Takeuchi Y., Global stability and periodic orbits for two-patch predator-prey diffusion-delay models. Mathematical Biosciences 1987 85 2 153 183 10.1016/0025-5564(87)90051-4 910243 ZBL0634.92017
-
(1987)
Mathematical Biosciences
, vol.85
, Issue.2
, pp. 153-183
-
-
Beretta, E.1
Solimano, F.2
Takeuchi, Y.3
-
4
-
-
0000262789
-
Global stability and predator dynamics in a model of prey dispersal in a patchy environment
-
10.1016/0362-546X(89)90026-6 1009083 ZBL0685.92018
-
Freedman H. I., Takeuchi Y., Global stability and predator dynamics in a model of prey dispersal in a patchy environment. Nonlinear Analysis. Theory, Methods & Applications 1989 13 8 993 1002 10.1016/0362-546X(89)90026-6 1009083 ZBL0685.92018
-
(1989)
Nonlinear Analysis. Theory, Methods & Applications
, vol.13
, Issue.8
, pp. 993-1002
-
-
Freedman, H.I.1
Takeuchi, Y.2
-
5
-
-
32044449222
-
Environmentally induced dispersal under heterogeneous logistic growth
-
DOI 10.1016/j.mbs.2005.11.004, PII S0025556405002075
-
Padrón V., Trevisan M. C., Environmentally induced dispersal under heterogeneous logistic growth. Mathematical Biosciences 2006 199 2 160 174 10.1016/j.mbs.2005.11.004 2211623 ZBL1086.92054 (Pubitemid 43197778)
-
(2006)
Mathematical Biosciences
, vol.199
, Issue.2
, pp. 160-174
-
-
Padron, V.1
Trevisan, M.C.2
-
6
-
-
14644388229
-
Stochastic differential delay equations of population dynamics
-
DOI 10.1016/j.jmaa.2004.09.027, PII S0022247X04007668
-
Mao X., Yuan C., Zou J., Stochastic differential delay equations of population dynamics. Journal of Mathematical Analysis and Applications 2005 304 1 296 320 10.1016/j.jmaa.2004.09.027 2124664 ZBL1062.92055 (Pubitemid 40317335)
-
(2005)
Journal of Mathematical Analysis and Applications
, vol.304
, Issue.1
, pp. 296-320
-
-
Mao, X.1
Yuan, C.2
Zou, J.3
-
7
-
-
3042542077
-
Permanence and extinction of periodic predator-prey systems in a patchy environment with delay
-
10.1016/S1468-1218(02)00026-3 1942689 ZBL1018.92033
-
Teng Z., Chen L., Permanence and extinction of periodic predator-prey systems in a patchy environment with delay. Nonlinear Analysis. Real World Applications 2003 4 2 335 364 10.1016/S1468-1218(02)00026-3 1942689 ZBL1018.92033
-
(2003)
Nonlinear Analysis. Real World Applications
, vol.4
, Issue.2
, pp. 335-364
-
-
Teng, Z.1
Chen, L.2
-
8
-
-
0031060733
-
Asymptotic behavior of a predator-prey system with diffusion and delays
-
Wendi W., Zhien M., Asymptotic behavior of a predator-prey system with diffusion and delays. Journal of Mathematical Analysis and Applications 1997 206 1 191 204 10.1006/jmaa.1997.5212 1429287 ZBL0872.92019 (Pubitemid 127175681)
-
(1997)
Journal of Mathematical Analysis and Applications
, vol.206
, Issue.1
, pp. 191-204
-
-
Wendi, W.1
Zhien, M.2
-
9
-
-
0034249333
-
Persistence and stability for a two-species ratio-dependent predator-prey system with time delay in a two-patch environment
-
10.1016/S0898-1221(00)00181-4 1772656 ZBL0949.92028
-
Xu R., Chen L., Persistence and stability for a two-species ratio-dependent predator-prey system with time delay in a two-patch environment. Computers & Mathematics with Applications 2000 40 4-5 577 588 10.1016/S0898-1221(00)00181-4 1772656 ZBL0949.92028
-
(2000)
Computers & Mathematics with Applications
, vol.40
, Issue.4-5
, pp. 577-588
-
-
Xu, R.1
Chen, L.2
-
10
-
-
0036772463
-
The effect of dispersal on permanence in a predator-prey population growth model
-
DOI 10.1016/S0898-1221(02)00217-1, PII S0898122102002171
-
Cui J., The effect of dispersal on permanence in a predator-prey population growth model. Computers & Mathematics with Applications 2002 44 8-9 1085 1097 10.1016/S0898-1221(02)00217-1 1937569 ZBL1032.92032 (Pubitemid 35250560)
-
(2002)
Computers and Mathematics with Applications
, vol.44
, Issue.8-9
, pp. 1085-1097
-
-
Cui, J.1
-
11
-
-
37349019387
-
Boundedness and permanence in a class of periodic time-dependent predator-prey system with prey dispersal and predator density-independence
-
DOI 10.1016/j.chaos.2006.07.003, PII S0960077906007089
-
Zhang L., Teng Z., Boundedness and permanence in a class of periodic time-dependent predator-prey system with prey dispersal and predator density-independence. Chaos, Solitons and Fractals 2008 36 3 729 739 10.1016/j.chaos.2006.07.003 2381707 (Pubitemid 350297941)
-
(2008)
Chaos, Solitons and Fractals
, vol.36
, Issue.3
, pp. 729-739
-
-
Zhang, L.1
Teng, Z.2
-
12
-
-
0002246746
-
Global asymptotic behavior in single-species discrete diffusion systems
-
10.1007/BF00160375 1256831 ZBL0799.92014
-
Lu Z. Y., Takeuchi Y., Global asymptotic behavior in single-species discrete diffusion systems. Journal of Mathematical Biology 1993 32 1 67 77 10.1007/BF00160375 1256831 ZBL0799.92014
-
(1993)
Journal of Mathematical Biology
, vol.32
, Issue.1
, pp. 67-77
-
-
Lu, Z.Y.1
Takeuchi, Y.2
-
13
-
-
67650529523
-
Analysis of a predator-prey model with modified Leslie-Gower and Holling-type II schemes with stochastic perturbation
-
10.1016/j.jmaa.2009.05.039 2546763 ZBL1190.34064
-
Ji C., Jiang D., Shi N., Analysis of a predator-prey model with modified Leslie-Gower and Holling-type II schemes with stochastic perturbation. Journal of Mathematical Analysis and Applications 2009 359 2 482 498 10.1016/j.jmaa.2009.05.039 2546763 ZBL1190.34064
-
(2009)
Journal of Mathematical Analysis and Applications
, vol.359
, Issue.2
, pp. 482-498
-
-
Ji, C.1
Jiang, D.2
Shi, N.3
-
14
-
-
78651240619
-
A note on a predator-prey model with modified Leslie-Gower and Holling-type II schemes with stochastic perturbation
-
10.1016/j.jmaa.2010.11.008 2754843 ZBL1216.34040
-
Ji C., Jiang D., Shi N., A note on a predator-prey model with modified Leslie-Gower and Holling-type II schemes with stochastic perturbation. Journal of Mathematical Analysis and Applications 2011 377 1 435 440 10.1016/j.jmaa.2010.11.008 2754843 ZBL1216.34040
-
(2011)
Journal of Mathematical Analysis and Applications
, vol.377
, Issue.1
, pp. 435-440
-
-
Ji, C.1
Jiang, D.2
Shi, N.3
-
15
-
-
34548686288
-
Stochastic analysis of predator-prey type ecosystems
-
DOI 10.1016/j.ecocom.2007.06.011, PII S1476945X07000712
-
Cai G., Lin Y., Stochastic analysis of predator-prey type ecosystems. Ecological Complexity 2007 4 4 242 249 10.1016/j.ecocom.2007.06.011 (Pubitemid 47419445)
-
(2007)
Ecological Complexity
, vol.4
, Issue.4
, pp. 242-249
-
-
Cai, G.Q.1
Lin, Y.K.2
-
16
-
-
68349130476
-
Population dynamical behavior of Lotka-Volterra system under regime switching
-
10.1016/j.cam.2009.06.021 2555412 ZBL1173.60020
-
Li X., Jiang D., Mao X., Population dynamical behavior of Lotka-Volterra system under regime switching. Journal of Computational and Applied Mathematics 2009 232 2 427 448 10.1016/j.cam.2009.06.021 2555412 ZBL1173.60020
-
(2009)
Journal of Computational and Applied Mathematics
, vol.232
, Issue.2
, pp. 427-448
-
-
Li, X.1
Jiang, D.2
Mao, X.3
-
18
-
-
67650711514
-
Population dynamical behavior of non-autonomous Lotka-Volterra competitive system with random perturbation
-
10.3934/dcds.2009.24.523 2486589 ZBL1161.92048
-
Li X., Mao X., Population dynamical behavior of non-autonomous Lotka-Volterra competitive system with random perturbation. Discrete and Continuous Dynamical Systems A 2009 24 2 523 545 10.3934/dcds.2009.24.523 2486589 ZBL1161.92048
-
(2009)
Discrete and Continuous Dynamical Systems A
, vol.24
, Issue.2
, pp. 523-545
-
-
Li, X.1
Mao, X.2
-
19
-
-
77956972065
-
Existence, uniqueness and ergodicity of positive solution of mutualism system with stochastic perturbation
-
Ji C., Jiang D., Liu H., Existence, uniqueness and ergodicity of positive solution of mutualism system with stochastic perturbation. Mathematical Problems in Engineering 2010 10 1155 1172
-
(2010)
Mathematical Problems in Engineering
, vol.10
, pp. 1155-1172
-
-
Ji, C.1
Jiang, D.2
Liu, H.3
-
21
-
-
0035439412
-
An algorithmic introduction to numerical simulation of stochastic differential equations
-
PII S0036144500378302
-
Higham D. J., An algorithmic introduction to numerical simulation of stochastic differential equations. SIAM Review 2001 43 3 525 546 10.1137/S0036144500378302 1872387 ZBL0979.65007 (Pubitemid 32991214)
-
(2001)
SIAM Review
, vol.43
, Issue.3
, pp. 525-546
-
-
Higham, D.J.1
-
22
-
-
70349388314
-
A graph-theoretic approach to the method of global Lyapunov functions
-
10.1090/S0002-9939-08-09341-6 2399043 ZBL1155.34028
-
Guo H., Li M. Y., Shuai Z., A graph-theoretic approach to the method of global Lyapunov functions. Proceedings of the American Mathematical Society 2008 136 8 2793 2802 10.1090/S0002-9939-08-09341-6 2399043 ZBL1155.34028
-
(2008)
Proceedings of the American Mathematical Society
, vol.136
, Issue.8
, pp. 2793-2802
-
-
Guo, H.1
Li, M.Y.2
Shuai, Z.3
|