메뉴 건너뛰기




Volumn 220, Issue , 2013, Pages 22-33

Online extraction of main linear trends for nonlinear time-varying processes

Author keywords

Adaptive linear model; Electrical load time series; Main linear trend; Online clustering; Temporal behavior

Indexed keywords

ELECTRICAL LOAD; ILLUSTRATIVE EXAMPLES; MAIN LINEAR TREND; ONLINE EXTRACTION; ONLINE-CLUSTERING; PH NEUTRALIZATION PROCESS; TEMPORAL BEHAVIOR; TIME-VARYING PROCESS; TRANSIENT STATE;

EID: 84868450791     PISSN: 00200255     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.ins.2012.06.022     Document Type: Conference Paper
Times cited : (4)

References (39)
  • 1
    • 0036791593 scopus 로고    scopus 로고
    • Modified Gath-Geva fuzzy clustering for identification of Takagi-Sugeno fuzzy models
    • J. Abonyi, R. Babuska, and F. Szeifert Modified Gath-Geva fuzzy clustering for identification of Takagi-Sugeno fuzzy models IEEE Trans. Syst. Man, Cybern. - Part B 32 5 2002 612 621
    • (2002) IEEE Trans. Syst. Man, Cybern. - Part B , vol.32 , Issue.5 , pp. 612-621
    • Abonyi, J.1    Babuska, R.2    Szeifert, F.3
  • 6
    • 0742272554 scopus 로고    scopus 로고
    • An approach to online identification of TakagiSugeno fuzzy models
    • P. Angelov, and D. Filev An approach to online identification of TakagiSugeno fuzzy models IEEE Trans. Syst., Man, Cybern. B 34 2004 484 498
    • (2004) IEEE Trans. Syst., Man, Cybern. B , vol.34 , pp. 484-498
    • Angelov, P.1    Filev, D.2
  • 7
    • 58149500793 scopus 로고    scopus 로고
    • Guest editorial evolving fuzzy systems - Preface to the special section
    • P. Angelo, D. Filev, and N. Kasabov Guest editorial evolving fuzzy systems - preface to the special section IEEE Trans. Fuzzy Syst. 16 2008 1390 1392
    • (2008) IEEE Trans. Fuzzy Syst. , vol.16 , pp. 1390-1392
    • Angelo, P.1    Filev, D.2    Kasabov, N.3
  • 8
    • 55349130665 scopus 로고    scopus 로고
    • On line learning fuzzy rule-based system structure from data streams
    • P. Angelov, X. Zhou, On line learning fuzzy rule-based system structure from data streams, in: IEEE Int. Conf. on Fuzzy Systems, 2008, pp. 915-922.
    • (2008) IEEE Int. Conf. on Fuzzy Systems , pp. 915-922
    • Angelov, P.1    Zhou, X.2
  • 9
    • 0002607813 scopus 로고    scopus 로고
    • Constructing fuzzy models by product space clustering
    • H. Hellendoorn, D. Driankov, Springer-Verlag Berlin, Germany
    • R. Babuska, and H. Verbruggen Constructing fuzzy models by product space clustering H. Hellendoorn, D. Driankov, Fuzzy Model Identification: Selected Approaches 1997 Springer-Verlag Berlin, Germany 53 90
    • (1997) Fuzzy Model Identification: Selected Approaches , pp. 53-90
    • Babuska, R.1    Verbruggen, H.2
  • 11
    • 34249988665 scopus 로고
    • Extracting qualitative dynamics from experimental data
    • D.S. Broomhead, and G.P. King Extracting qualitative dynamics from experimental data Physica D: Nonlin. Phenom. 20 1986 217 236
    • (1986) Physica D: Nonlin. Phenom. , vol.20 , pp. 217-236
    • Broomhead, D.S.1    King, G.P.2
  • 12
    • 50149097761 scopus 로고    scopus 로고
    • Identification of fuzzy models using a successive tuning method with a variant identification ratio
    • J.N. Choi, S.K. Oh, and W. Pedrycz Identification of fuzzy models using a successive tuning method with a variant identification ratio Fuzzy Sets Syst. 159 2008 2873 2889
    • (2008) Fuzzy Sets Syst. , vol.159 , pp. 2873-2889
    • Choi, J.N.1    Oh, S.K.2    Pedrycz, W.3
  • 15
    • 0033349138 scopus 로고    scopus 로고
    • An effective neuro-fuzzy paradigm for machinery condition health monitoring
    • Washington, DC
    • G. G. Yen, P. Meesad, An effective neuro-fuzzy paradigm for machinery condition health monitoring, in: Proc. IEEE Int. Joint Conf. IJCNN'99, Washington, DC, 1999, pp. 1567-1572.
    • (1999) Proc. IEEE Int. Joint Conf. IJCNN'99 , pp. 1567-1572
    • Yen, G.G.1    Meesad, P.2
  • 18
    • 0035426538 scopus 로고    scopus 로고
    • Genetic programming for model selection of TSK-fuzzy systems original research article
    • F. Hoffmann, and O. Nelles Genetic programming for model selection of TSK-fuzzy systems original research article Inform. Sci. 136 2001 7 28
    • (2001) Inform. Sci. , vol.136 , pp. 7-28
    • Hoffmann, F.1    Nelles, O.2
  • 19
    • 0024137490 scopus 로고    scopus 로고
    • Increased rates of convergence through learning rate adaptation
    • R.A. Jacobs Increased rates of convergence through learning rate adaptation Neur. Netw. 1 1998 295 308
    • (1998) Neur. Netw. , vol.1 , pp. 295-308
    • Jacobs, R.A.1
  • 20
    • 0027601884 scopus 로고
    • ANFIS: Adaptive-network-based fuzzy inference system
    • J.S.R. Jang ANFIS: adaptive-network-based fuzzy inference system IEEE Trans. Syst. Man, Cybern. 23 3 1993 665 685
    • (1993) IEEE Trans. Syst. Man, Cybern. , vol.23 , Issue.3 , pp. 665-685
    • Jang, J.S.R.1
  • 21
    • 0036530967 scopus 로고    scopus 로고
    • DENFIS: Dynamic evolving neural-fuzzy inference system and its application for time series prediction
    • N. Kasabov DENFIS: dynamic evolving neural-fuzzy inference system and its application for time series prediction IEEE Trans. Fuzzy Syst. 2002 144 154
    • (2002) IEEE Trans. Fuzzy Syst. , pp. 144-154
    • Kasabov, N.1
  • 23
    • 71249131653 scopus 로고    scopus 로고
    • Online identification of a neurofuzzy model through indirect fuzzy clustering of data space
    • A. Kalhor, B.N. Araabi, C. Lucas, Online identification of a neurofuzzy model through indirect fuzzy clustering of data space, in: Proc. 18th IEEE Int. Conf. on Fuzzy Systems, 2009, pp. 356-359.
    • (2009) Proc. 18th IEEE Int. Conf. on Fuzzy Systems , pp. 356-359
    • Kalhor, A.1    Araabi, B.N.2    Lucas, C.3
  • 24
    • 79952309310 scopus 로고    scopus 로고
    • An online predictor model as adaptive habitually linear and transiently nonlinear model
    • A. Kalhor, B.N. Araabi, and C. Lucas An online predictor model as adaptive habitually linear and transiently nonlinear model Evolv. Syst. 1 2010 29 41
    • (2010) Evolv. Syst. , vol.1 , pp. 29-41
    • Kalhor, A.1    Araabi, B.N.2    Lucas, C.3
  • 25
    • 67349184460 scopus 로고    scopus 로고
    • T-S fuzzy model identification based on a novel fuzzy c-regression model clustering algorithm
    • C. Li, J. Zhou, X. Xiang, Q. Li, and X. An T-S fuzzy model identification based on a novel fuzzy c-regression model clustering algorithm Eng. Appl. Artif. Intell. 22 2009 646 653
    • (2009) Eng. Appl. Artif. Intell. , vol.22 , pp. 646-653
    • Li, C.1    Zhou, J.2    Xiang, X.3    Li, Q.4    An, X.5
  • 26
    • 55249122198 scopus 로고    scopus 로고
    • FLEXFIS: A robust incremental learning approach for evolving Takagi-Sugeno fuzzy models
    • E.D. Lughofer FLEXFIS: a robust incremental learning approach for evolving Takagi-Sugeno fuzzy models IEEE Trans. Fuzzy Syst. 16 2008 1393 1410
    • (2008) IEEE Trans. Fuzzy Syst. , vol.16 , pp. 1393-1410
    • Lughofer, E.D.1
  • 28
    • 0038927293 scopus 로고    scopus 로고
    • Department of Electrical Engineering, ESAT/SISTA, K.U.Leuven, Belgium, < ∼ smc/daisy/> (visited on 10.10.10)
    • B.L.R. De Moor (Ed.), DaISy: Database for the Identification of Systems, Department of Electrical Engineering, ESAT/SISTA, K.U.Leuven, Belgium, < http://homes.esat.kuleuven.be/ ∼ smc/daisy/> (visited on 10.10.10).
    • DaISy: Database for the Identification of Systems
    • De Moor, B.L.R.1
  • 29
  • 30
    • 70350605478 scopus 로고    scopus 로고
    • Data-driven fuzzy modeling for Takagi-Sugeno-Kang fuzzy system
    • B. Rezaee, and M.H. Fazel Zarandi Data-driven fuzzy modeling for Takagi-Sugeno-Kang fuzzy system Inform. Sci. 180 2010 241 255
    • (2010) Inform. Sci. , vol.180 , pp. 241-255
    • Rezaee, B.1    Fazel Zarandi, M.H.2
  • 32
    • 0021892282 scopus 로고
    • Fuzzy identification of systems and its applications to modeling and control
    • T. Takagi, and M. Sugeno Fuzzy identification of systems and its applications to modeling and control IEEE Trans. Syst. Man, Cybern. 15 1 1985 116 132
    • (1985) IEEE Trans. Syst. Man, Cybern. , vol.15 , Issue.1 , pp. 116-132
    • Takagi, T.1    Sugeno, M.2
  • 34
    • 10844260641 scopus 로고    scopus 로고
    • MS-TSKfnn: Novel Takagi-Sugeno-Kang fuzzy neural network using ART like clustering
    • D. Wang, C. Quek, and G.S. Ng MS-TSKfnn: novel Takagi-Sugeno-Kang fuzzy neural network using ART like clustering Proc. IEEE Int. Joint Conf. Neur. Netw. 3 2004 2361 2366
    • (2004) Proc. IEEE Int. Joint Conf. Neur. Netw. , vol.3 , pp. 2361-2366
    • Wang, D.1    Quek, C.2    Ng, G.S.3
  • 35
    • 0026928374 scopus 로고
    • Fuzzy basis functions, universal approximation and orthogonal least-squares learning
    • L. Wang, and J. Mendel Fuzzy basis functions, universal approximation and orthogonal least-squares learning IEEE Trans. Neur. Netw. 3 1992 807 814
    • (1992) IEEE Trans. Neur. Netw. , vol.3 , pp. 807-814
    • Wang, L.1    Mendel, J.2
  • 36
    • 0031988675 scopus 로고    scopus 로고
    • Extracting fuzzy rules for system modeling using a hybrid of genetic algorithm and Kalman filter
    • L. Wang, and J. Yen Extracting fuzzy rules for system modeling using a hybrid of genetic algorithm and Kalman filter Fuzzy Sets Syst. 101 1999 353 362
    • (1999) Fuzzy Sets Syst. , vol.101 , pp. 353-362
    • Wang, L.1    Yen, J.2
  • 37
    • 0025724253 scopus 로고
    • A method for self-determination of adaptive learning rates in back propagation
    • M. Weir A method for self-determination of adaptive learning rates in back propagation Neur. Netw. 4 1991 371 379
    • (1991) Neur. Netw. , vol.4 , pp. 371-379
    • Weir, M.1
  • 39
    • 0040527678 scopus 로고
    • Machine Intelligence Institute, Iona College, New Rochelle, NY 10801, Tech. Rep. MII-1318R
    • R. Yager, D. Filev, Generation of fuzzy rules by mountain clustering, Machine Intelligence Institute, Iona College, New Rochelle, NY 10801, Tech. Rep. MII-1318R, 1994.
    • (1994) Generation of Fuzzy Rules by Mountain Clustering
    • Yager, R.1    Filev, D.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.