-
3
-
-
0004178636
-
-
Cambridge University Press, Cambridge
-
J. Thijssen, Computational Physics (Cambridge University Press, Cambridge, 1999).
-
(1999)
Computational Physics
-
-
Thijssen, J.1
-
4
-
-
79952085433
-
-
JCPSA6 0021-9606 10.1063/1.3558787
-
S. Toxvaerd and J. C. Dyre, J. Chem. Phys. JCPSA6 0021-9606 10.1063/1.3558787 134, 081102 (2011).
-
(2011)
J. Chem. Phys.
, vol.134
, pp. 081102
-
-
Toxvaerd, S.1
Dyre, J.C.2
-
7
-
-
84868354779
-
-
in edited by H. Ehrenreich, F. Seitz, and D. Turnbull, Vol. 25 (Academic, New York
-
D. C. Wallace, in Solid State Physics: Advances in Research and Applications, edited by, H. Ehrenreich, F. Seitz, and, D. Turnbull, Vol. 25 (Academic, New York, 1970), p. 300.
-
(1970)
Solid State Physics: Advances in Research and Applications
, pp. 300
-
-
Wallace, D.C.1
-
9
-
-
0001320113
-
-
JCPSA6 0021-9606 10.1063/1.447221
-
J. R. Ray and A. Rahman, J. Chem. Phys. JCPSA6 0021-9606 10.1063/1.447221 80, 4423 (1984).
-
(1984)
J. Chem. Phys.
, vol.80
, pp. 4423
-
-
Ray, J.R.1
Rahman, A.2
-
10
-
-
0001268085
-
-
CPHREF 0167-7977 10.1016/0167-7977(88)90009-3
-
J. R. Ray, Comput. Phys. Rep. CPHREF 0167-7977 10.1016/0167-7977(88) 90009-3 8, 109 (1988).
-
(1988)
Comput. Phys. Rep.
, vol.8
, pp. 109
-
-
Ray, J.R.1
-
11
-
-
36549095183
-
-
JAPIAU 0021-8979 10.1063/1.341877
-
J. F. Lutsko, J. Appl. Phys. JAPIAU 0021-8979 10.1063/1.341877 64, 1152 (1988).
-
(1988)
J. Appl. Phys.
, vol.64
, pp. 1152
-
-
Lutsko, J.F.1
-
12
-
-
0001233760
-
-
JAPIAU 0021-8979 10.1063/1.342716
-
J. F. Lutsko, J. Appl. Phys. JAPIAU 0021-8979 10.1063/1.342716 65, 2991 (1989).
-
(1989)
J. Appl. Phys.
, vol.65
, pp. 2991
-
-
Lutsko, J.F.1
-
13
-
-
19744364849
-
-
PRLTAO 0031-9007 10.1103/PhysRevLett.93.195501
-
C. Maloney and A. Lemaître, Phys. Rev. Lett. PRLTAO 0031-9007 10.1103/PhysRevLett.93.195501 93, 195501 (2004).
-
(2004)
Phys. Rev. Lett.
, vol.93
, pp. 195501
-
-
Maloney, C.1
Lemaître, A.2
-
14
-
-
19744380961
-
-
PRLTAO 0031-9007 10.1103/PhysRevLett.93.175501
-
K. Yoshimoto, T. S. Jain, K. Van Workum, P. F. Nealey, and J. J. de Pablo, Phys. Rev. Lett. PRLTAO 0031-9007 10.1103/PhysRevLett.93.175501 93, 175501 (2004).
-
(2004)
Phys. Rev. Lett.
, vol.93
, pp. 175501
-
-
Yoshimoto, K.1
Jain, T.S.2
Van Workum, K.3
Nealey, P.F.4
De Pablo, J.J.5
-
15
-
-
33644535512
-
Statistical calculation of elastic moduli for atomistic models
-
DOI 10.1103/PhysRevB.71.184108
-
K. Yoshimoto, G. J. Papakonstantopoulos, J. F. Lutsko, and J. J. de Pablo, Phys. Rev. B PRBMDO 1098-0121 10.1103/PhysRevB.71.184108 71, 184108 (2005). (Pubitemid 43292146)
-
(2005)
Physical Review B - Condensed Matter and Materials Physics
, vol.71
, Issue.18
, pp. 184108
-
-
Yoshimoto, K.1
Papakonstantopoulos, G.J.2
Lutsko, J.F.3
De Pablo, J.J.4
-
16
-
-
34047197620
-
-
in edited by M. Ferrario, G. Ciccotti, and K. Binder, Vol. 704 (Springer, Berlin
-
J.-L. Barrat, in Computer Simulations in Condensed Matter Systems: From Materials to Chemical Biology, edited by, M. Ferrario, G. Ciccotti, and, K. Binder, Vol. 704 (Springer, Berlin, 2006), pp. 287-307.
-
(2006)
Computer Simulations in Condensed Matter Systems: From Materials to Chemical Biology
, pp. 287-307
-
-
Barrat, J.-L.1
-
17
-
-
70349533091
-
-
PLEEE8 1539-3755 10.1103/PhysRevE.80.026112
-
M. Tsamados, A. Tanguy, C. Goldenberg, and J.-L. Barrat, Phys. Rev. E PLEEE8 1539-3755 10.1103/PhysRevE.80.026112 80, 026112 (2009).
-
(2009)
Phys. Rev. e
, vol.80
, pp. 026112
-
-
Tsamados, M.1
Tanguy, A.2
Goldenberg, C.3
Barrat, J.-L.4
-
18
-
-
80455123828
-
-
EPJSFH 1292-8941 10.1140/epje/i2011-11097-4
-
B. Schnell, H. Meyer, C. Fond, J. Wittmer, and J. Baschnagel, Eur. Phys. J. E EPJSFH 1292-8941 10.1140/epje/i2011-11097-4 34, 97 (2011).
-
(2011)
Eur. Phys. J. e
, vol.34
, pp. 97
-
-
Schnell, B.1
Meyer, H.2
Fond, C.3
Wittmer, J.4
Baschnagel, J.5
-
19
-
-
84868361938
-
-
EPJSFH 1292-8941 10.1140/epje/i2012-12093-x
-
N. Schulmann, H. Xu, H. Meyer, P. Polińska, J. Baschnagel, and J. P. Wittmer, Eur. Phys. J. E EPJSFH 1292-8941 10.1140/epje/i2012-12093-x 35, 93 (2012).
-
(2012)
Eur. Phys. J. e
, vol.35
, pp. 93
-
-
Schulmann, N.1
Xu, H.2
Meyer, H.3
Polińska, P.4
Baschnagel, J.5
Wittmer, J.P.6
-
20
-
-
33751246192
-
Elasticity of highly cross-linked random networks
-
DOI 10.1209/epl/i2006-10310-7
-
S. Ulrich, X. Mao, P. Goldbart, and A. Zippelius, Europhys. Lett. EULEEJ 0295-5075 10.1209/epl/i2006-10310-7 76, 677 (2006). (Pubitemid 44788490)
-
(2006)
Europhysics Letters
, vol.76
, Issue.4
, pp. 677-682
-
-
Ulrich, S.1
Mao, X.2
Goldbart, P.M.3
Zippelius, A.4
-
22
-
-
77954304976
-
-
PRLTAO 0031-9007 10.1103/PhysRevLett.105.015504
-
H. Yoshino and M. Mézard, Phys. Rev. Lett. PRLTAO 0031-9007 10.1103/PhysRevLett.105.015504 105, 015504 (2010).
-
(2010)
Phys. Rev. Lett.
, vol.105
, pp. 015504
-
-
Yoshino, H.1
Mézard, M.2
-
23
-
-
80052347386
-
-
PRLTAO 0031-9007 10.1103/PhysRevLett.107.105505
-
G. Szamel and E. Flenner, Phys. Rev. Lett. PRLTAO 0031-9007 10.1103/PhysRevLett.107.105505 107, 105505 (2011).
-
(2011)
Phys. Rev. Lett.
, vol.107
, pp. 105505
-
-
Szamel, G.1
Flenner, E.2
-
24
-
-
84862514292
-
-
JCPSA6 0021-9606 10.1063/1.4722343
-
H. Yoshino, J. Chem. Phys. JCPSA6 0021-9606 10.1063/1.4722343 136, 214108 (2012).
-
(2012)
J. Chem. Phys.
, vol.136
, pp. 214108
-
-
Yoshino, H.1
-
25
-
-
84868015179
-
-
0031-9007 10.1103/PhysRevLett.109.178301
-
C. L. Klix, F. Ebert, F. Weysser, M. Fuchs, G. Maret, and P. Keim, Phys. Rev. Lett. 0031-9007 10.1103/PhysRevLett.109.178301 109, 178301 (2012).
-
(2012)
Phys. Rev. Lett.
, vol.109
, pp. 178301
-
-
Klix, C.L.1
Ebert, F.2
Weysser, F.3
Fuchs, M.4
Maret, G.5
Keim, P.6
-
26
-
-
77951113195
-
-
RMPHAT 0034-6861 10.1103/RevModPhys.82.789
-
G. Parisi and F. Zamponi, Rev. Mod. Phys. RMPHAT 0034-6861 10.1103/RevModPhys.82.789 82, 789 (2010).
-
(2010)
Rev. Mod. Phys.
, vol.82
, pp. 789
-
-
Parisi, G.1
Zamponi, F.2
-
27
-
-
38149061041
-
-
JNFMDI 0377-0257 10.1016/j.jnnfm.2007.06.007
-
E. del Gado and W. Kob, J. Non-Newtonian Fluid Mech. JNFMDI 0377-0257 10.1016/j.jnnfm.2007.06.007 149, 28 (2008).
-
(2008)
J. Non-Newtonian Fluid Mech.
, vol.149
, pp. 28
-
-
Del Gado, E.1
Kob, W.2
-
28
-
-
78650156196
-
-
1022-1336 10.1002/marc.201000473
-
C. Tonhauser, D. Wilms, Y. Korth, H. Frey, and C. Friedrich, Macromol. Rapid Commun. 1022-1336 10.1002/marc.201000473 31, 2127 (2010).
-
(2010)
Macromol. Rapid Commun.
, vol.31
, pp. 2127
-
-
Tonhauser, C.1
Wilms, D.2
Korth, Y.3
Frey, H.4
Friedrich, C.5
-
29
-
-
0035525884
-
-
JPCBFK 1520-6106 10.1021/jp0113073
-
M. Filali, M. J. Ouazzani, E. Michel, R. Aznar, G. Porte, and J. Appell, J. Phys. Chem. B JPCBFK 1520-6106 10.1021/jp0113073 105, 10528 (2001).
-
(2001)
J. Phys. Chem. B
, vol.105
, pp. 10528
-
-
Filali, M.1
Ouazzani, M.J.2
Michel, E.3
Aznar, R.4
Porte, G.5
Appell, J.6
-
30
-
-
18744425181
-
-
PRLTAO 0031-9007 10.1103/PhysRevLett.91.015901
-
A. Zilman, J. Kieffer, F. Molino, G. Porte, and S. A. Safran, Phys. Rev. Lett. PRLTAO 0031-9007 10.1103/PhysRevLett.91.015901 91, 015901 (2003).
-
(2003)
Phys. Rev. Lett.
, vol.91
, pp. 015901
-
-
Zilman, A.1
Kieffer, J.2
Molino, F.3
Porte, G.4
Safran, S.A.5
-
31
-
-
6444235056
-
-
1539-3755 10.1103/PhysRevE.52.4134
-
W. Kob and H. C. Andersen, Phys. Rev. E 1539-3755 10.1103/PhysRevE.52. 4134 52, 4134 (1995).
-
(1995)
Phys. Rev. e
, vol.52
, pp. 4134
-
-
Kob, W.1
Andersen, H.C.2
-
32
-
-
0036871473
-
-
PRBMDO 1098-0121 10.1103/PhysRevB.66.174205
-
A. Tanguy, J. P. Wittmer, F. Leonforte, and J.-L. Barrat, Phys. Rev. B PRBMDO 1098-0121 10.1103/PhysRevB.66.174205 66, 174205 (2002).
-
(2002)
Phys. Rev. B
, vol.66
, pp. 174205
-
-
Tanguy, A.1
Wittmer, J.P.2
Leonforte, F.3
Barrat, J.-L.4
-
35
-
-
84868382935
-
-
Apart from the Born term CBαβγδ and the stress-fluctuation term CFαβγδ, there is a kinetic contribution CKαβγδ and in prestressed systems (as in the systems considered numerically by us) an explicit contribution from the applied stress to the experimentally relevant elastic moduli resulting from an infinitesimal strain applied to the reference state.
-
Apart from the Born term C B α β γ δ and the stress-fluctuation term C F α β γ δ, there is a kinetic contribution C K α β γ δ and in prestressed systems (as in the systems considered numerically by us) an explicit contribution from the applied stress to the experimentally relevant elastic moduli resulting from an infinitesimal strain applied to the reference state.
-
-
-
-
36
-
-
84868383317
-
-
For systems with finite mean shear stress, various stress-fluctuation formulas must be changed and especially Eq. for the shear modulus G must be modified.
-
For systems with finite mean shear stress, various stress-fluctuation formulas must be changed and especially Eq. for the shear modulus G must be modified.
-
-
-
-
37
-
-
84868383321
-
-
The trivial kinetic energy contributions to the elastic moduli are removed as far as possible from the presentation since MC results are also considered here.
-
The trivial kinetic energy contributions to the elastic moduli are removed as far as possible from the presentation since MC results are also considered here.
-
-
-
-
38
-
-
0000260434
-
-
JAPIAU 0021-8979 10.1063/1.1710417
-
F. Birch, J. Appl. Phys. JAPIAU 0021-8979 10.1063/1.1710417 9, 279 (1938).
-
(1938)
J. Appl. Phys.
, vol.9
, pp. 279
-
-
Birch, F.1
-
39
-
-
84868350549
-
-
If plotted as a function of the number of configurations sampled, the compression modulus for both models is seen to decrease first with sampling time t before leveling off at a finite value. Similar behavior has been observed for polymeric systems.
-
If plotted as a function of the number of configurations sampled, the compression modulus for both models is seen to decrease first with sampling time t before leveling off at a finite value. Similar behavior has been observed for polymeric systems.
-
-
-
-
40
-
-
84868350547
-
-
A similar, albeit very small, impulsive correction arises for the "configurational temperature" being the ratio of the mean-squared forces acting on the particles and the mean divergence of these forces. See Eq. (7.2.11) of Ref..
-
A similar, albeit very small, impulsive correction arises for the "configurational temperature" being the ratio of the mean-squared forces acting on the particles and the mean divergence of these forces. See Eq. (7.2.11) of Ref..
-
-
-
-
41
-
-
84868350546
-
-
For our low-temperature MC simulations, we use in addition to the standard local jump moves both longitudinal and (more importantly) transverse plane waves with wave vectors commensurate with the simulation box. The amplitudes of the collective displacement fields for each wave vector are chosen as implied by continuum theory. If such collective displacements are included, the shear stress for one given quenched configuration can be shown to be negligible as required.
-
For our low-temperature MC simulations, we use in addition to the standard local jump moves both longitudinal and (more importantly) transverse plane waves with wave vectors commensurate with the simulation box. The amplitudes of the collective displacement fields for each wave vector are chosen as implied by continuum theory. If such collective displacements are included, the shear stress for one given quenched configuration can be shown to be negligible as required.
-
-
-
-
42
-
-
84868350548
-
-
It is well known that two-point correlations, as measured by the pair correlation function g(r), do barely change at the glass transition. Please note that the shear modulus G computed according to Eq. is a properly defined thermodynamic correlation function characterizing not only two-point, but also three- and four-point correlations. Apparently, these higher static correlations change qualitatively at the glass transition.
-
It is well known that two-point correlations, as measured by the pair correlation function g (r), do barely change at the glass transition. Please note that the shear modulus G computed according to Eq. is a properly defined thermodynamic correlation function characterizing not only two-point, but also three- and four-point correlations. Apparently, these higher static correlations change qualitatively at the glass transition.
-
-
-
-
43
-
-
84868382939
-
-
Since such a thermodynamic relation may be questioned for the strongly frozen systems, we have also determined G using the mechanical definition by linear regression from the observed conjugated instantaneous shear strain and stress. This yields the same values as Eq. .
-
Since such a thermodynamic relation may be questioned for the strongly frozen systems, we have also determined G using the mechanical definition by linear regression from the observed conjugated instantaneous shear strain and stress. This yields the same values as Eq..
-
-
-
|