-
1
-
-
34247953814
-
-
SCIEAS 0036-8075 10.1126/science.177.4047.393
-
P.W. Anderson, Science 177, 393 (1972). SCIEAS 0036-8075 10.1126/science.177.4047.393
-
(1972)
Science
, vol.177
, pp. 393
-
-
Anderson, P.W.1
-
3
-
-
0011038084
-
-
PRBMDO 0163-1829 10.1103/PhysRevB.24.51
-
R.F. Kayser, Jr., J.B. Hubbard, and H.J. Raveche, Phys. Rev. B PRBMDO 0163-1829 24, 51 (1981). 10.1103/PhysRevB.24.51
-
(1981)
Phys. Rev. B
, vol.24
, pp. 51
-
-
Kayser Jr., R.F.1
Hubbard, J.B.2
Raveche, H.J.3
-
4
-
-
84951599513
-
-
ZEPYAA 1434-6001 10.1007/BF01325630
-
H. Wagner, Z. Phys. 195, 273 (1966). ZEPYAA 1434-6001 10.1007/BF01325630
-
(1966)
Z. Phys.
, vol.195
, pp. 273
-
-
Wagner, H.1
-
6
-
-
0039721106
-
-
PRBMDO 0163-1829 10.1103/PhysRevB.48.112
-
G. Szamel and M.H. Ernst, Phys. Rev. B PRBMDO 0163-1829 48, 112 (1993) (these authors were unaware of Ref. 4). 10.1103/PhysRevB.48.112
-
(1993)
Phys. Rev. B
, vol.48
, pp. 112
-
-
Szamel, G.1
Ernst, M.H.2
-
7
-
-
33646646265
-
-
PRBMDO 0163-1829 10.1103/PhysRevB.36.5388]. The two-transition scenario was subsequently reformulated in the replica approach of.
-
The term "dynamic glass transition" implies a two-transition scenario, with a higher-temperature transition resulting in a metastable glassy state and a lower-temperature thermodynamic glass transition. Such a scenario was first found in the analysis of certain mean-field spin models by Kirkpatrick, Thirumalai, and Wolynes [see, e.g. T.R. Kirkpatrick and D. Thirumalai, Phys. Rev. B PRBMDO 0163-1829 36, 5388 (1987) 10.1103/PhysRevB.36. 5388
-
(1987)
Phys. Rev. B
, vol.36
, pp. 5388
-
-
Kirkpatrick, T.R.1
Thirumalai, D.2
-
8
-
-
4243295550
-
-
PRLTAO 0031-9007 10.1103/PhysRevLett.79.2486
-
S. Franz and G. Parisi, Phys. Rev. Lett. 79, 2486 (1997). PRLTAO 0031-9007 10.1103/PhysRevLett.79.2486
-
(1997)
Phys. Rev. Lett.
, vol.79
, pp. 2486
-
-
Franz, S.1
Parisi, G.2
-
10
-
-
0038398772
-
-
PRLTAO 0031-9007 10.1103/PhysRevLett.82.747
-
M. Mézard and G. Parisi, Phys. Rev. Lett. 82, 747 (1999). PRLTAO 0031-9007 10.1103/PhysRevLett.82.747
-
(1999)
Phys. Rev. Lett.
, vol.82
, pp. 747
-
-
Mézard, M.1
Parisi, G.2
-
11
-
-
4244207031
-
-
PRLTAO 0031-9007 10.1103/PhysRevLett.43.1754
-
G. Parisi, Phys. Rev. Lett. 43, 1754 (1979). PRLTAO 0031-9007 10.1103/PhysRevLett.43.1754
-
(1979)
Phys. Rev. Lett.
, vol.43
, pp. 1754
-
-
Parisi, G.1
-
12
-
-
77955220912
-
-
PRBMDO 1098-0121 10.1103/PhysRevB.81.134110
-
C. Walz and M. Fuchs, Phys. Rev. B PRBMDO 1098-0121 81, 134110 (2010). 10.1103/PhysRevB.81.134110
-
(2010)
Phys. Rev. B
, vol.81
, pp. 134110
-
-
Walz, C.1
Fuchs, M.2
-
13
-
-
68649100472
-
-
PRLTAO 0031-9007 10.1103/PhysRevLett.103.025701
-
R. Mari, F. Krzakala, and J. Kurchan, Phys. Rev. Lett. 103, 025701 (2009). PRLTAO 0031-9007 10.1103/PhysRevLett.103.025701
-
(2009)
Phys. Rev. Lett.
, vol.103
, pp. 025701
-
-
Mari, R.1
Krzakala, F.2
Kurchan, J.3
-
14
-
-
77953752174
-
-
PRLTAO 0031-9007 10.1103/PhysRevLett.104.248305
-
A. Ghosh, Phys. Rev. Lett. 104, 248305 (2010). PRLTAO 0031-9007 10.1103/PhysRevLett.104.248305
-
(2010)
Phys. Rev. Lett.
, vol.104
, pp. 248305
-
-
Ghosh, A.1
-
15
-
-
3643144414
-
-
PRLTAO 0031-9007 10.1103/PhysRevLett.28.1183
-
D.G. Triezenberg and R. Zwanzig, Phys. Rev. Lett. 28, 1183 (1972). PRLTAO 0031-9007 10.1103/PhysRevLett.28.1183
-
(1972)
Phys. Rev. Lett.
, vol.28
, pp. 1183
-
-
Triezenberg, D.G.1
Zwanzig, R.2
-
16
-
-
0000717499
-
-
JCPSA6 0021-9606 10.1063/1.1679447
-
R. Lovett, P.W. DeHaven, J.J. Vieceli, Jr., and F.P. Buff, J. Chem. Phys. 58, 1880 (1973). JCPSA6 0021-9606 10.1063/1.1679447
-
(1973)
J. Chem. Phys.
, vol.58
, pp. 1880
-
-
Lovett, R.1
Dehaven, P.W.2
Vieceli Jr., J.J.3
Buff, F.P.4
-
17
-
-
78751646697
-
-
EULEEJ 0295-5075 10.1209/0295-5075/91/56004
-
G. Szamel, Europhys. Lett. 91, 56004 (2010). EULEEJ 0295-5075 10.1209/0295-5075/91/56004
-
(2010)
Europhys. Lett.
, vol.91
, pp. 56004
-
-
Szamel, G.1
-
19
-
-
77954304976
-
-
PRLTAO 0031-9007 10.1103/PhysRevLett.105.015504An early simulational study
-
H. Yoshino and M. Mezard, Phys. Rev. Lett. 105, 015504 (2010). PRLTAO 0031-9007 10.1103/PhysRevLett.105.015504
-
(2010)
Phys. Rev. Lett.
, vol.105
, pp. 015504
-
-
Yoshino, H.1
Mezard, M.2
-
20
-
-
84956136958
-
-
EULEEJ 0295-5075 10.1209/0295-5075/7/8/007] is consistent with the modulus vanishing continuously at the dynamic transition, whereas a very recent one suggests a discontinuous jump
-
J.-L. Barrat, Europhys. Lett. 7, 707 (1988) EULEEJ 0295-5075 10.1209/0295-5075/7/8/007
-
(1988)
Europhys. Lett.
, vol.7
, pp. 707
-
-
Barrat, J.-L.1
-
21
-
-
80052354405
-
-
(private communication)]
-
F. Weysser (private communication)].
-
-
-
Weysser, F.1
-
22
-
-
65349124331
-
-
JORHD2 0148-6055 10.1122/1.3093088] suggests a discontinuous jump of the modulus at the dynamic transition.
-
Experimental results are similarly ambiguous; a recent study M. Siebenbürger, J. Rheol. 53, 707 (2009) JORHD2 0148-6055 10.1122/1.3093088
-
(2009)
J. Rheol.
, vol.53
, pp. 707
-
-
Siebenbürger, M.1
-
23
-
-
0035918755
-
Long range density correlations in disordered solids
-
DOI 10.1080/00268970010028827
-
A.J. Masters, Mol. Phys. 99, 907 (2001). MOPHAM 0026-8976 10.1080/00268970010028827 (Pubitemid 35227717)
-
(2001)
Molecular Physics
, vol.99
, Issue.10
, pp. 907-912
-
-
Masters, A.J.1
|