메뉴 건너뛰기




Volumn , Issue , 2012, Pages 186-189

An improved FVS-KPCA method of fault detection on TE process

Author keywords

Fault Detection; Feature Vector Selection; Kernel Principal Component Analysis; Tennessee EastmanPprocess

Indexed keywords

COMPLEX NONLINEAR SYSTEM; DETECTION METHODS; FEATURE VECTOR SELECTION; FEATURE VECTORS; KERNEL MATRICES; KERNEL PRINCIPAL COMPONENT ANALYSES (KPCA); SAMPLE SETS; TE PROCESS; TENNESSEE EASTMAN; TENNESSEE EASTMANPPROCESS;

EID: 84868233120     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/ICDMA.2012.45     Document Type: Conference Paper
Times cited : (5)

References (6)
  • 1
    • 0347243182 scopus 로고    scopus 로고
    • Nonlinear component analysis as a kernel eigenvalue problem
    • B Schölkopf, A Smola, K R Müller. Nonlinear component analysis as a kernel eigenvalue problem. Neural Computation, 1998,10(5): 1299-1319
    • (1998) Neural Computation , vol.10 , Issue.5 , pp. 1299-1319
    • Schölkopf, B.1    Smola, A.2    Müller, K.R.3
  • 2
  • 3
    • 9744237208 scopus 로고    scopus 로고
    • Multiple-fault diagnosis of the Tennessee Eastman process based on system decomposition and dynamic PLS
    • G. Lee, C.H. Han, E.S. Yoon. Multiple-fault diagnosis of the Tennessee Eastman process based on system decomposition and dynamic PLS. Industrial & Engineering Chemistry Research, 2004,43(25): 8037-8048
    • (2004) Industrial & Engineering Chemistry Research , vol.43 , Issue.25 , pp. 8037-8048
    • Lee, G.1    Han, C.H.2    Yoon, E.S.3
  • 4
    • 58749115727 scopus 로고    scopus 로고
    • Enhanced statistical analysis of nonlinear processes using KPCA,KICA and SVM
    • Yingwei Zhang. Enhanced statistical analysis of nonlinear processes using KPCA,KICA and SVM. Chemical Engineering Science, 2009, 64: 801-811
    • (2009) Chemical Engineering Science , vol.64 , pp. 801-811
    • Zhang, Y.1
  • 5
    • 0242383468 scopus 로고    scopus 로고
    • Feature vector selection and projection using kernels
    • G. Baudat, F. Anouar. Feature vector selection and projection using kernels. Neurocomputing, 2003, 12(6): 1-18
    • (2003) Neurocomputing , vol.12 , Issue.6 , pp. 1-18
    • Baudat, G.1    Anouar, F.2
  • 6
    • 36148959019 scopus 로고    scopus 로고
    • Improved kernel principal component analysis for fault detection
    • Peiling Cui, Junhong Li, Cuizeng Wang. Improved kernel principal component analysis for fault detection. Expert Systems with Applications,2008, 34: 1210-1219
    • (2008) Expert Systems with Applications , vol.34 , pp. 1210-1219
    • Cui, P.1    Li, J.2    Wang, C.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.