-
1
-
-
33744729550
-
-
San Diego, CA: Elsevier, Academic Press
-
Ettensohn C, Wessel G, Wray GA. Development of Sea Urchins, Ascidians, and Other Invertebrate Deuterostomes: Experimental Approaches, vol 74. San Diego, CA: Elsevier, Academic Press; 2004.
-
(2004)
Development of Sea Urchins, Ascidians, and Other Invertebrate Deuterostomes: Experimental Approaches
, vol.74
-
-
Ettensohn, C.1
Wessel, G.2
Wray, G.A.3
-
2
-
-
0000887517
-
Entwicklungsmechanische Studien. I. Der Werth der beiden ersten Furchungszellen in der Echinodermenentwickelung.
-
Driesch H. Entwicklungsmechanische Studien. I. Der Werth der beiden ersten Furchungszellen in der Echinodermenentwickelung. Zeitschr Wiss Zool 1891, 53:160-182.
-
(1891)
Zeitschr Wiss Zool
, vol.53
, pp. 160-182
-
-
Driesch, H.1
-
3
-
-
0001769577
-
Uber mehrpolige mitosen als mittel zur analyse des zellkerns.
-
Boveri T. Uber mehrpolige mitosen als mittel zur analyse des zellkerns. Verh d phys-med Ges Wursburg N F 1902, 35:67-90.
-
(1902)
Verh d phys-med Ges Wursburg N F
, vol.35
, pp. 67-90
-
-
Boveri, T.1
-
4
-
-
51249192810
-
Zwei Fehlerquellen bei Merogoniegversuchen und die Entwicklungsfähigkeit merogonischer partiellmerogonischer Seeigelbastarde.
-
Boveri T. Zwei Fehlerquellen bei Merogoniegversuchen und die Entwicklungsfähigkeit merogonischer partiellmerogonischer Seeigelbastarde. Arch Entwicklungsmech Org 1918, 44:417-471.
-
(1918)
Arch Entwicklungsmech Org
, vol.44
, pp. 417-471
-
-
Boveri, T.1
-
5
-
-
78149412083
-
The mechanics of sea urchin development as studied by operative methods.
-
Horstadius S. The mechanics of sea urchin development as studied by operative methods. Biol Rev 1939, 14:132-179.
-
(1939)
Biol Rev
, vol.14
, pp. 132-179
-
-
Horstadius, S.1
-
6
-
-
0002768045
-
Experiments concerning the cleavage stimulus in sand dollar eggs.
-
Rapaport R. Experiments concerning the cleavage stimulus in sand dollar eggs. J Exp Zool 1961, 148:81-89.
-
(1961)
J Exp Zool
, vol.148
, pp. 81-89
-
-
Rapaport, R.1
-
8
-
-
43149086112
-
Global regulatory logic for specification of an embryonic cell lineage.
-
Oliveri P, Tu Q, Davidson EH. Global regulatory logic for specification of an embryonic cell lineage. Proc Natl Acad Sci U S A 2008, 105:5955-5962.
-
(2008)
Proc Natl Acad Sci U S A
, vol.105
, pp. 5955-5962
-
-
Oliveri, P.1
Tu, Q.2
Davidson, E.H.3
-
9
-
-
77951205560
-
The endoderm gene regulatory network in sea urchin embryos up to mid-blastula stage.
-
Peter IS, Davidson EH. The endoderm gene regulatory network in sea urchin embryos up to mid-blastula stage. Dev Biol 2010, 340:188-199.
-
(2010)
Dev Biol
, vol.340
, pp. 188-199
-
-
Peter, I.S.1
Davidson, E.H.2
-
10
-
-
78650362376
-
Emerging properties of animal gene regulatory networks.
-
Davidson EH. Emerging properties of animal gene regulatory networks. Nature 2010, 468:911-920.
-
(2010)
Nature
, vol.468
, pp. 911-920
-
-
Davidson, E.H.1
-
11
-
-
40449100030
-
Direct multiplexed measurement of gene expression with color-coded probe pairs.
-
Geiss GK, Bumgarner RE, Birditt B, Dahl T, Dowidar N, Dunaway DL, Fell HP, Ferree S, George RD, Grogan T, et al. Direct multiplexed measurement of gene expression with color-coded probe pairs. Nat Biotechnol 2008, 26:317-325.
-
(2008)
Nat Biotechnol
, vol.26
, pp. 317-325
-
-
Geiss, G.K.1
Bumgarner, R.E.2
Birditt, B.3
Dahl, T.4
Dowidar, N.5
Dunaway, D.L.6
Fell, H.P.7
Ferree, S.8
George, R.D.9
Grogan, T.10
-
12
-
-
77956628617
-
High accuracy, high-resolution prevalence measurement for the majority of locally expressed regulatory genes in early sea urchin development.
-
Materna SC, Nam J, Davidson EH. High accuracy, high-resolution prevalence measurement for the majority of locally expressed regulatory genes in early sea urchin development. Gene Expr Patterns 2010, 10:177-184.
-
(2010)
Gene Expr Patterns
, vol.10
, pp. 177-184
-
-
Materna, S.C.1
Nam, J.2
Davidson, E.H.3
-
13
-
-
0036500609
-
A genomic regulatory network for development.
-
Davidson EH, Rast JP, Oliveri P, Ransick A, Calestani C, Yuh CH, Minokawa T, Amore G, Hinman V, Arenas-Mena C, et al. A genomic regulatory network for development. Science 2002, 295:1669-1678.
-
(2002)
Science
, vol.295
, pp. 1669-1678
-
-
Davidson, E.H.1
Rast, J.P.2
Oliveri, P.3
Ransick, A.4
Calestani, C.5
Yuh, C.H.6
Minokawa, T.7
Amore, G.8
Hinman, V.9
Arenas-Mena, C.10
-
14
-
-
77649264807
-
Functional cis-regulatory genomics for systems biology.
-
Nam J, Dong P, Tarpine R, Istrail S, Davidson EH. Functional cis-regulatory genomics for systems biology. Proc Natl Acad Sci U S A 2010, 107:3930-3935.
-
(2010)
Proc Natl Acad Sci U S A
, vol.107
, pp. 3930-3935
-
-
Nam, J.1
Dong, P.2
Tarpine, R.3
Istrail, S.4
Davidson, E.H.5
-
15
-
-
71149089027
-
Network design principles from the sea urchin embryo.
-
Davidson EH. Network design principles from the sea urchin embryo. Curr Opin Genet Dev 2009, 19:535-540.
-
(2009)
Curr Opin Genet Dev
, vol.19
, pp. 535-540
-
-
Davidson, E.H.1
-
16
-
-
60749129310
-
Lessons from a gene regulatory network: echinoderm skeletogenesis provides insights into evolution, plasticity and morphogenesis.
-
Ettensohn CA. Lessons from a gene regulatory network: echinoderm skeletogenesis provides insights into evolution, plasticity and morphogenesis. Development 2009, 136:11-21.
-
(2009)
Development
, vol.136
, pp. 11-21
-
-
Ettensohn, C.A.1
-
17
-
-
43149126104
-
Transfer of a large gene regulatory apparatus to a new developmental address in echinoid evolution.
-
Gao F, Davidson EH. Transfer of a large gene regulatory apparatus to a new developmental address in echinoid evolution. Proc Natl Acad Sci U S A 2008, 105:6091-6096.
-
(2008)
Proc Natl Acad Sci U S A
, vol.105
, pp. 6091-6096
-
-
Gao, F.1
Davidson, E.H.2
-
18
-
-
64249101543
-
Evolution of gene regulatory network architectures: examples of subcircuit conservation and plasticity between classes of echinoderms.
-
Hinman VF, Yankura KA, McCauley BS. Evolution of gene regulatory network architectures: examples of subcircuit conservation and plasticity between classes of echinoderms. Biochim Biophys Acta 2009, 1789:326-332.
-
(2009)
Biochim Biophys Acta
, vol.1789
, pp. 326-332
-
-
Hinman, V.F.1
Yankura, K.A.2
McCauley, B.S.3
-
19
-
-
0037534978
-
Patterning the sea urchin embryo: gene regulatory networks, signaling pathways, and cellular interactions.
-
Angerer LM, Angerer RC. Patterning the sea urchin embryo: gene regulatory networks, signaling pathways, and cellular interactions. Curr Top Dev Biol 2003, 53:159-198.
-
(2003)
Curr Top Dev Biol
, vol.53
, pp. 159-198
-
-
Angerer, L.M.1
Angerer, R.C.2
-
21
-
-
0030831284
-
The allocation of early blastomeres to the ectoderm and endoderm is variable in the sea urchin embryo.
-
Logan CY, McClay DR. The allocation of early blastomeres to the ectoderm and endoderm is variable in the sea urchin embryo. Development 1997, 124:2213-2223.
-
(1997)
Development
, vol.124
, pp. 2213-2223
-
-
Logan, C.Y.1
McClay, D.R.2
-
22
-
-
78751474548
-
Small micromeres contribute to the germline in the sea urchin.
-
Yajima M, Wessel GM. Small micromeres contribute to the germline in the sea urchin. Development 2011, 138:237-243.
-
(2011)
Development
, vol.138
, pp. 237-243
-
-
Yajima, M.1
Wessel, G.M.2
-
23
-
-
37749044978
-
A conserved role for the nodal signaling pathway in the establishment of dorso-ventral and left-right axes in deuterostomes.
-
Duboc V, Lepage T. A conserved role for the nodal signaling pathway in the establishment of dorso-ventral and left-right axes in deuterostomes. J Exp Zool B Mol Dev Evol 2008, 310:41-53.
-
(2008)
J Exp Zool B Mol Dev Evol
, vol.310
, pp. 41-53
-
-
Duboc, V.1
Lepage, T.2
-
24
-
-
72949097669
-
Patterning of the dorsal-ventral axis in echinoderms: insights into the evolution of the BMP-chordin signaling network.
-
Lapraz F, Besnardeau L, Lepage T. Patterning of the dorsal-ventral axis in echinoderms: insights into the evolution of the BMP-chordin signaling network. PLoS Biol 2009, 7:e1000248.
-
(2009)
PLoS Biol
, vol.7
-
-
Lapraz, F.1
Besnardeau, L.2
Lepage, T.3
-
25
-
-
0004046537
-
Embryonic development of the brittle-star Amphipholis kochii in laboratory culture.
-
Yamashita M. Embryonic development of the brittle-star Amphipholis kochii in laboratory culture. Biol Bull 1985, 169:131-142.
-
(1985)
Biol Bull
, vol.169
, pp. 131-142
-
-
Yamashita, M.1
-
26
-
-
34347241738
-
A switch in the cellular basis of skeletogenesis in late-stage sea urchin larvae.
-
Yajima M. A switch in the cellular basis of skeletogenesis in late-stage sea urchin larvae. Dev Biol 2007, 307:272-281.
-
(2007)
Dev Biol
, vol.307
, pp. 272-281
-
-
Yajima, M.1
-
27
-
-
0032914194
-
Nuclear β-catenin is required to specify vegetal cell fates in the sea urchin embryo.
-
Logan CY, Miller JR, Ferkowicz MJ, McClay DR. Nuclear β-catenin is required to specify vegetal cell fates in the sea urchin embryo. Development 1999, 126:345-357.
-
(1999)
Development
, vol.126
, pp. 345-357
-
-
Logan, C.Y.1
Miller, J.R.2
Ferkowicz, M.J.3
McClay, D.R.4
-
28
-
-
0032483023
-
β-Catenin is essential for patterning the maternally specified animal-vegetal axis in the sea urchin embryo.
-
Wikramanayake AH, Huang L, Klein WH. β-Catenin is essential for patterning the maternally specified animal-vegetal axis in the sea urchin embryo. Proc Natl Acad Sci U S A 1998, 95:9343-9348.
-
(1998)
Proc Natl Acad Sci U S A
, vol.95
, pp. 9343-9348
-
-
Wikramanayake, A.H.1
Huang, L.2
Klein, W.H.3
-
29
-
-
77957213909
-
Spicule formation by isolated micromeres of the sea urchin embryo.
-
Okazaki K. Spicule formation by isolated micromeres of the sea urchin embryo. Amer Zool 1975, 15:567-581.
-
(1975)
Amer Zool
, vol.15
, pp. 567-581
-
-
Okazaki, K.1
-
30
-
-
34547624884
-
A missing link in the sea urchin embryo gene regulatory network: hesC and the double-negative specification of micromeres.
-
Revilla-i-Domingo R, Oliveri P, Davidson EH. A missing link in the sea urchin embryo gene regulatory network: hesC and the double-negative specification of micromeres. Proc Natl Acad Sci U S A 2007, 104:12383-12388.
-
(2007)
Proc Natl Acad Sci U S A
, vol.104
, pp. 12383-12388
-
-
Revilla-i-Domingo, R.1
Oliveri, P.2
Davidson, E.H.3
-
31
-
-
77950494318
-
Activation of the skeletogenic gene regulatory network in the early sea urchin embryo.
-
Sharma T, Ettensohn CA. Activation of the skeletogenic gene regulatory network in the early sea urchin embryo. Development 2010, 137:1149-1157.
-
(2010)
Development
, vol.137
, pp. 1149-1157
-
-
Sharma, T.1
Ettensohn, C.A.2
-
32
-
-
0028802423
-
Micromeres are required for normal vegetal plate specification in sea urchin embryos.
-
Ransick A, Davidson EH. Micromeres are required for normal vegetal plate specification in sea urchin embryos. Development 1995, 121:3215-3222.
-
(1995)
Development
, vol.121
, pp. 3215-3222
-
-
Ransick, A.1
Davidson, E.H.2
-
33
-
-
61349182003
-
Gene regulatory network interactions in sea urchin endomesoderm induction.
-
Sethi AJ, Angerer RC, Angerer LM. Gene regulatory network interactions in sea urchin endomesoderm induction. PLoS Biol 2009, 7:248-264.
-
(2009)
PLoS Biol
, vol.7
, pp. 248-264
-
-
Sethi, A.J.1
Angerer, R.C.2
Angerer, L.M.3
-
34
-
-
58149490721
-
Gene regulatory network subcircuit controlling a dynamic spatial pattern of signaling in the sea urchin embryo.
-
Smith J, Davidson EH. Gene regulatory network subcircuit controlling a dynamic spatial pattern of signaling in the sea urchin embryo. Proc Natl Acad Sci U S A 2008, 105:20089-20094.
-
(2008)
Proc Natl Acad Sci U S A
, vol.105
, pp. 20089-20094
-
-
Smith, J.1
Davidson, E.H.2
-
35
-
-
4043087613
-
Nuclear β-catenin-dependent Wnt8 signaling in vegetal cells of the early sea urchin embryo regulates gastrulation and differentiation of endoderm and mesodermal cell lineages.
-
Wikramanayake AH, Peterson R, Chen J, Huang L, Bince JM, McClay DR, Klein WH. Nuclear β-catenin-dependent Wnt8 signaling in vegetal cells of the early sea urchin embryo regulates gastrulation and differentiation of endoderm and mesodermal cell lineages. Genesis 2004, 39:194-205.
-
(2004)
Genesis
, vol.39
, pp. 194-205
-
-
Wikramanayake, A.H.1
Peterson, R.2
Chen, J.3
Huang, L.4
Bince, J.M.5
McClay, D.R.6
Klein, W.H.7
-
36
-
-
0030804543
-
Identification and localization of a sea urchin Notch homologue: insights into vegetal plate regionalization and Notch receptor regulation.
-
Sherwood DR, McClay DR. Identification and localization of a sea urchin Notch homologue: insights into vegetal plate regionalization and Notch receptor regulation. Development 1997, 124:3363-3374.
-
(1997)
Development
, vol.124
, pp. 3363-3374
-
-
Sherwood, D.R.1
McClay, D.R.2
-
37
-
-
0032934519
-
LvNotch signaling mediates secondary mesenchyme specification in the sea urchin embryo.
-
Sherwood DR, McClay DR. LvNotch signaling mediates secondary mesenchyme specification in the sea urchin embryo. Development 1999, 126:1703-1713.
-
(1999)
Development
, vol.126
, pp. 1703-1713
-
-
Sherwood, D.R.1
McClay, D.R.2
-
38
-
-
0036333533
-
LvDelta is a mesoderm-inducing signal in the sea urchin embryo and can endow blastomeres with organizer-like properties.
-
Sweet HC, Gehring M, Ettensohn CA. LvDelta is a mesoderm-inducing signal in the sea urchin embryo and can endow blastomeres with organizer-like properties. Development 2002, 129:1945-1955.
-
(2002)
Development
, vol.129
, pp. 1945-1955
-
-
Sweet, H.C.1
Gehring, M.2
Ettensohn, C.A.3
-
39
-
-
46449135120
-
Cell-cell adhesion in the cnidaria: insights into the evolution of tissue morphogenesis.
-
Magie CR, Martindale MQ. Cell-cell adhesion in the cnidaria: insights into the evolution of tissue morphogenesis. Biol Bull 2008, 214:218-232.
-
(2008)
Biol Bull
, vol.214
, pp. 218-232
-
-
Magie, C.R.1
Martindale, M.Q.2
-
40
-
-
77954860342
-
Epithelial-mesenchymal transition in cancer: parallels between normal development and tumor progression.
-
Micalizzi D, Farabaugh S, Ford H. Epithelial-mesenchymal transition in cancer: parallels between normal development and tumor progression. J Mammary Gland Biol Neoplasia 2010, 15:117-134.
-
(2010)
J Mammary Gland Biol Neoplasia
, vol.15
, pp. 117-134
-
-
Micalizzi, D.1
Farabaugh, S.2
Ford, H.3
-
41
-
-
0036439238
-
Molecular mechanisms of epithelial morphogenesis.
-
Schock F, Perrimon N. Molecular mechanisms of epithelial morphogenesis. Annu Rev Cell Dev Biol 2002, 18:463-493.
-
(2002)
Annu Rev Cell Dev Biol
, vol.18
, pp. 463-493
-
-
Schock, F.1
Perrimon, N.2
-
42
-
-
0038022709
-
Activation of pmar1 controls specification of micromeres in the sea urchin embryo.
-
Oliveri P, Davidson EH, McClay DR. Activation of pmar1 controls specification of micromeres in the sea urchin embryo. Dev Biol 2003, 258:32-43.
-
(2003)
Dev Biol
, vol.258
, pp. 32-43
-
-
Oliveri, P.1
Davidson, E.H.2
McClay, D.R.3
-
43
-
-
0036607107
-
A regulatory gene network that directs micromere specification in the sea urchin embryo.
-
Oliveri P, Carrick DM, Davidson EH. A regulatory gene network that directs micromere specification in the sea urchin embryo. Dev Biol 2002, 246:209-228.
-
(2002)
Dev Biol
, vol.246
, pp. 209-228
-
-
Oliveri, P.1
Carrick, D.M.2
Davidson, E.H.3
-
44
-
-
46049114056
-
Twist is an essential regulator of the skeletogenic gene regulatory network in the sea urchin embryo.
-
Wu SY, Yang YP, McClay DR. Twist is an essential regulator of the skeletogenic gene regulatory network in the sea urchin embryo. Dev Biol 2008, 319:406-415.
-
(2008)
Dev Biol
, vol.319
, pp. 406-415
-
-
Wu, S.Y.1
Yang, Y.P.2
McClay, D.R.3
-
45
-
-
34247330636
-
The Snail repressor is required for PMC ingression in the sea urchin embryo.
-
Wu SY, McClay DR. The Snail repressor is required for PMC ingression in the sea urchin embryo. Development 2007, 134:1061-1070.
-
(2007)
Development
, vol.134
, pp. 1061-1070
-
-
Wu, S.Y.1
McClay, D.R.2
-
46
-
-
79951538623
-
The control of foxN2/3 expression in sea urchin embryos and its function in the skeletogenic gene regulatory network.
-
Rho HK, McClay DR. The control of foxN2/3 expression in sea urchin embryos and its function in the skeletogenic gene regulatory network. Development 2011, 138:937-945.
-
(2011)
Development
, vol.138
, pp. 937-945
-
-
Rho, H.K.1
McClay, D.R.2
-
47
-
-
58149481232
-
Properties of developmental gene regulatory networks.
-
Davidson EH, Levine MS. Properties of developmental gene regulatory networks. Proc Natl Acad Sci U S A 2008, 105:20063-20066.
-
(2008)
Proc Natl Acad Sci U S A
, vol.105
, pp. 20063-20066
-
-
Davidson, E.H.1
Levine, M.S.2
-
48
-
-
70849130706
-
Regulative recovery in the sea urchin embryo and the stabilizing role of fail-safe gene network wiring.
-
Smith J, Davidson EH. Regulative recovery in the sea urchin embryo and the stabilizing role of fail-safe gene network wiring. Proc Natl Acad Sci U S A 2009, 106:18291-18296.
-
(2009)
Proc Natl Acad Sci U S A
, vol.106
, pp. 18291-18296
-
-
Smith, J.1
Davidson, E.H.2
-
49
-
-
0019803969
-
Ultrastructural and time-lapse studies of primary mesenchyme cell behavior in normal and sulfate-deprived sea urchin embryos.
-
Katow H, Solursh M. Ultrastructural and time-lapse studies of primary mesenchyme cell behavior in normal and sulfate-deprived sea urchin embryos. Exp Cell Res 1981, 136:233-245.
-
(1981)
Exp Cell Res
, vol.136
, pp. 233-245
-
-
Katow, H.1
Solursh, M.2
-
50
-
-
0031573934
-
Characterization of the role of cadherin in regulating cell adhesion during sea urchin development.
-
Miller JR, McClay DR. Characterization of the role of cadherin in regulating cell adhesion during sea urchin development. Dev Biol 1997, 192:323-339.
-
(1997)
Dev Biol
, vol.192
, pp. 323-339
-
-
Miller, J.R.1
McClay, D.R.2
-
51
-
-
0037330641
-
Primary mesenchyme cell patterning during the early stages following ingression.
-
Peterson RE, McClay DR. Primary mesenchyme cell patterning during the early stages following ingression. Dev Biol 2003, 254:68-78.
-
(2003)
Dev Biol
, vol.254
, pp. 68-78
-
-
Peterson, R.E.1
McClay, D.R.2
-
52
-
-
0021951808
-
Three cell recognition changes accompany the ingression of sea urchin primary mesenchyme cells.
-
Fink RD, McClay DR. Three cell recognition changes accompany the ingression of sea urchin primary mesenchyme cells. Dev Biol 1985, 107:66-74.
-
(1985)
Dev Biol
, vol.107
, pp. 66-74
-
-
Fink, R.D.1
McClay, D.R.2
-
53
-
-
0033084189
-
αSU2, an epithelial integrin that binds laminin in the sea urchin embryo.
-
Hertzler PL, McClay DR. αSU2, an epithelial integrin that binds laminin in the sea urchin embryo. Dev Biol 1999, 207:1-13.
-
(1999)
Dev Biol
, vol.207
, pp. 1-13
-
-
Hertzler, P.L.1
McClay, D.R.2
-
54
-
-
0031573809
-
Changes in the pattern of adherens junction-associated β-catenin accompany morphogenesis in the sea urchin embryo.
-
Miller JR, McClay DR. Changes in the pattern of adherens junction-associated β-catenin accompany morphogenesis in the sea urchin embryo. Dev Biol 1997, 192:310-322.
-
(1997)
Dev Biol
, vol.192
, pp. 310-322
-
-
Miller, J.R.1
McClay, D.R.2
-
55
-
-
0023204082
-
A sea urchin primary mesenchyme cell surface protein, msp130, defined by cDNA probes and antibody to fusion protein.
-
Leaf DS, Anstrom JA, Chin JE, Harkey MA, Raff RA. A sea urchin primary mesenchyme cell surface protein, msp130, defined by cDNA probes and antibody to fusion protein. Dev Biol 1987, 121:29-40.
-
(1987)
Dev Biol
, vol.121
, pp. 29-40
-
-
Leaf, D.S.1
Anstrom, J.A.2
Chin, J.E.3
Harkey, M.A.4
Raff, R.A.5
-
56
-
-
34347326245
-
Localized VEGF signaling from ectoderm to mesenchyme cells controls morphogenesis of the sea urchin embryo skeleton.
-
Duloquin L, Lhomond G, Gache C. Localized VEGF signaling from ectoderm to mesenchyme cells controls morphogenesis of the sea urchin embryo skeleton. Development 2007, 134:2293-2302.
-
(2007)
Development
, vol.134
, pp. 2293-2302
-
-
Duloquin, L.1
Lhomond, G.2
Gache, C.3
-
57
-
-
0027062705
-
Microfilaments, cell shape changes, and the formation of primary mesenchyme in sea urchin embryos.
-
Anstrom JA. Microfilaments, cell shape changes, and the formation of primary mesenchyme in sea urchin embryos. J Exp Zool 1992, 264:312-322.
-
(1992)
J Exp Zool
, vol.264
, pp. 312-322
-
-
Anstrom, J.A.1
-
58
-
-
0024545609
-
Sea urchin primary mesenchyme cells: ingression occurs independent of microtubules.
-
Anstrom JA. Sea urchin primary mesenchyme cells: ingression occurs independent of microtubules. Dev Biol 1989, 131:269-275.
-
(1989)
Dev Biol
, vol.131
, pp. 269-275
-
-
Anstrom, J.A.1
-
60
-
-
0036768630
-
SpADAM, a sea urchin ADAM, has conserved structure and expression.
-
Rise M, Burke RD. SpADAM, a sea urchin ADAM, has conserved structure and expression. Mech Dev 2002, 117:275-281.
-
(2002)
Mech Dev
, vol.117
, pp. 275-281
-
-
Rise, M.1
Burke, R.D.2
-
61
-
-
0029073651
-
Dynamics of thin filopodia during sea urchin gastrulation.
-
Miller J, Fraser SE, McClay D. Dynamics of thin filopodia during sea urchin gastrulation. Development 1995, 121:2501-2511.
-
(1995)
Development
, vol.121
, pp. 2501-2511
-
-
Miller, J.1
Fraser, S.E.2
McClay, D.3
-
62
-
-
0029557107
-
Four-dimensional microscopic analysis of the filopodial behavior of primary mesenchyme cells during gastrulation in the sea urchin embryo.
-
Malinda KM, Fisher GW, Ettensohn CA. Four-dimensional microscopic analysis of the filopodial behavior of primary mesenchyme cells during gastrulation in the sea urchin embryo. Dev Biol 1995, 172:552-566.
-
(1995)
Dev Biol
, vol.172
, pp. 552-566
-
-
Malinda, K.M.1
Fisher, G.W.2
Ettensohn, C.A.3
-
63
-
-
0028095498
-
Primary mesenchyme cell migration in the sea urchin embryo: distribution of directional cues.
-
Malinda KM, Ettensohn CA. Primary mesenchyme cell migration in the sea urchin embryo: distribution of directional cues. Dev Biol 1994, 164:562-578.
-
(1994)
Dev Biol
, vol.164
, pp. 562-578
-
-
Malinda, K.M.1
Ettensohn, C.A.2
-
64
-
-
0033573139
-
The role of thin filopodia in motility and morphogenesis.
-
McClay DR. The role of thin filopodia in motility and morphogenesis. Exp Cell Res 1999, 253:296-301.
-
(1999)
Exp Cell Res
, vol.253
, pp. 296-301
-
-
McClay, D.R.1
-
65
-
-
0032126725
-
The dynamics and regulation of mesenchymal cell fusion in the sea urchin embryo.
-
Hodor PG, Ettensohn CA. The dynamics and regulation of mesenchymal cell fusion in the sea urchin embryo. Dev Biol 1998, 199:111-124.
-
(1998)
Dev Biol
, vol.199
, pp. 111-124
-
-
Hodor, P.G.1
Ettensohn, C.A.2
-
66
-
-
0035983638
-
Biomineralization of the spicules of sea urchin embryos.
-
Wilt FH. Biomineralization of the spicules of sea urchin embryos. Zoolog Sci 2002, 19:253-261.
-
(2002)
Zoolog Sci
, vol.19
, pp. 253-261
-
-
Wilt, F.H.1
-
67
-
-
0026478840
-
Commitment along the dorsoventral axis of the sea urchin embryo is altered in response to NiCl2.
-
Hardin J, Coffman JA, Black SD, McClay DR. Commitment along the dorsoventral axis of the sea urchin embryo is altered in response to NiCl2. Development 1992, 116:671-685.
-
(1992)
Development
, vol.116
, pp. 671-685
-
-
Hardin, J.1
Coffman, J.A.2
Black, S.D.3
McClay, D.R.4
-
68
-
-
0028258119
-
Skeletal pattern is specified autonomously by the primary mesenchyme cells in sea urchin embryos.
-
Armstrong N, McClay DR. Skeletal pattern is specified autonomously by the primary mesenchyme cells in sea urchin embryos. Dev Biol 1994, 162:329-338.
-
(1994)
Dev Biol
, vol.162
, pp. 329-338
-
-
Armstrong, N.1
McClay, D.R.2
-
69
-
-
12144288504
-
Nodal and BMP2/4 signaling organizes the oral-aboral axis of the sea urchin embryo.
-
Duboc V, Rottinger E, Besnardeau L, Lepage T. Nodal and BMP2/4 signaling organizes the oral-aboral axis of the sea urchin embryo. Dev Cell 2004, 6:397-410.
-
(2004)
Dev Cell
, vol.6
, pp. 397-410
-
-
Duboc, V.1
Rottinger, E.2
Besnardeau, L.3
Lepage, T.4
-
70
-
-
0027379438
-
Cell-cell interactions regulate skeleton formation in the sea urchin embryo.
-
Armstrong N, Hardin J, McClay DR. Cell-cell interactions regulate skeleton formation in the sea urchin embryo. Development 1993, 119:833-840.
-
(1993)
Development
, vol.119
, pp. 833-840
-
-
Armstrong, N.1
Hardin, J.2
McClay, D.R.3
-
71
-
-
0027101818
-
Pattern formation during gastrulation in the sea urchin embryo.
-
McClay DR, Armstrong NA, Hardin J. Pattern formation during gastrulation in the sea urchin embryo. Dev Suppl 1992, 33-41.
-
(1992)
Dev Suppl
, pp. 33-41
-
-
McClay, D.R.1
Armstrong, N.A.2
Hardin, J.3
-
72
-
-
43049116104
-
The dynamics of secretion during sea urchin embryonic skeleton formation.
-
Wilt FH, Killian CE, Hamilton P, Croker L. The dynamics of secretion during sea urchin embryonic skeleton formation. Exp Cell Res 2008, 314:1744-1752.
-
(2008)
Exp Cell Res
, vol.314
, pp. 1744-1752
-
-
Wilt, F.H.1
Killian, C.E.2
Hamilton, P.3
Croker, L.4
-
73
-
-
14844300874
-
Developmental biology meets materials science: morphogenesis of biomineralized structures.
-
Wilt FH. Developmental biology meets materials science: morphogenesis of biomineralized structures. Dev Biol 2005, 280:15-25.
-
(2005)
Dev Biol
, vol.280
, pp. 15-25
-
-
Wilt, F.H.1
-
74
-
-
57349194256
-
Molecular aspects of biomineralization of the echinoderm endoskeleton.
-
Killian CE, Wilt FH. Molecular aspects of biomineralization of the echinoderm endoskeleton. Chem Rev 2008, 108:4463-4474.
-
(2008)
Chem Rev
, vol.108
, pp. 4463-4474
-
-
Killian, C.E.1
Wilt, F.H.2
-
75
-
-
0023489922
-
Localization and expression of msp130, a primary mesenchyme lineage-specific cell surface protein in the sea urchin embryo.
-
Anstrom JA, Chin JE, Leaf DS, Parks AL, Raff RA. Localization and expression of msp130, a primary mesenchyme lineage-specific cell surface protein in the sea urchin embryo. Development 1987, 101:255-265.
-
(1987)
Development
, vol.101
, pp. 255-265
-
-
Anstrom, J.A.1
Chin, J.E.2
Leaf, D.S.3
Parks, A.L.4
Raff, R.A.5
-
76
-
-
0022353920
-
Sequential expression of germ-layer specific molecules in the sea urchin embryo.
-
Wessel GM, McClay DR. Sequential expression of germ-layer specific molecules in the sea urchin embryo. Dev Biol 1985, 111:451-463.
-
(1985)
Dev Biol
, vol.111
, pp. 451-463
-
-
Wessel, G.M.1
McClay, D.R.2
-
77
-
-
0023258292
-
A lineage-specific gene encoding a major matrix protein of the sea urchin embryo spicule. I. Authentication of the cloned gene and its developmental expression.
-
Benson S, Sucov H, Stephens L, Davidson E, Wilt F. A lineage-specific gene encoding a major matrix protein of the sea urchin embryo spicule. I. Authentication of the cloned gene and its developmental expression. Dev Biol 1987, 120:499-506.
-
(1987)
Dev Biol
, vol.120
, pp. 499-506
-
-
Benson, S.1
Sucov, H.2
Stephens, L.3
Davidson, E.4
Wilt, F.5
-
78
-
-
38949085860
-
FGF signals guide migration of mesenchymal cells, control skeletal morphogenesis [corrected] and regulate gastrulation during sea urchin development.
-
Rottinger E, Saudemont A, Duboc V, Besnardeau L, McClay D, Lepage T. FGF signals guide migration of mesenchymal cells, control skeletal morphogenesis [corrected] and regulate gastrulation during sea urchin development. Development 2008, 135:353-365.
-
(2008)
Development
, vol.135
, pp. 353-365
-
-
Rottinger, E.1
Saudemont, A.2
Duboc, V.3
Besnardeau, L.4
McClay, D.5
Lepage, T.6
-
79
-
-
34249794029
-
A genome-wide analysis of biomineralization-related proteins in the sea urchin Strongylocentrotus purpuratus.
-
Livingston BT, Killian CE, Wilt F, Cameron A, Landrum MJ, Ermolaeva O, Sapojnikov V, Maglott DR, Buchanan AM, Ettensohn CA. A genome-wide analysis of biomineralization-related proteins in the sea urchin Strongylocentrotus purpuratus. Dev Biol 2006, 300:335-348.
-
(2006)
Dev Biol
, vol.300
, pp. 335-348
-
-
Livingston, B.T.1
Killian, C.E.2
Wilt, F.3
Cameron, A.4
Landrum, M.J.5
Ermolaeva, O.6
Sapojnikov, V.7
Maglott, D.R.8
Buchanan, A.M.9
Ettensohn, C.A.10
-
80
-
-
12244259068
-
Identification and developmental expression of new biomineralization proteins in the sea urchin Strongylocentrotus purpuratus.
-
Illies MR, Peeler MT, Dechtiaruk AM, Ettensohn CA. Identification and developmental expression of new biomineralization proteins in the sea urchin Strongylocentrotus purpuratus. Dev Genes Evol 2002, 212:419-431.
-
(2002)
Dev Genes Evol
, vol.212
, pp. 419-431
-
-
Illies, M.R.1
Peeler, M.T.2
Dechtiaruk, A.M.3
Ettensohn, C.A.4
-
81
-
-
4544223705
-
Gastrulation in the sea urchin embryo: a model system for analyzing the morphogenesis of a monolayered epithelium.
-
Kominami T, Takata H. Gastrulation in the sea urchin embryo: a model system for analyzing the morphogenesis of a monolayered epithelium. Dev Growth Differ 2004, 46:309-326.
-
(2004)
Dev Growth Differ
, vol.46
, pp. 309-326
-
-
Kominami, T.1
Takata, H.2
-
82
-
-
64549089251
-
Two ParaHox genes, SpLox and SpCdx, interact to partition the posterior endoderm in the formation of a functional gut.
-
Cole AG, Rizzo F, Martinez P, Fernandez-Serra M, Arnone MI. Two ParaHox genes, SpLox and SpCdx, interact to partition the posterior endoderm in the formation of a functional gut. Development 2009, 136:541-549.
-
(2009)
Development
, vol.136
, pp. 541-549
-
-
Cole, A.G.1
Rizzo, F.2
Martinez, P.3
Fernandez-Serra, M.4
Arnone, M.I.5
-
83
-
-
0022120393
-
Mechanisms of epithelial invagination
-
Ettensohn CA. Mechanisms of epithelial invagination. Quart Rev Biol 1984, 60:289-307.
-
(1984)
Quart Rev Biol
, vol.60
, pp. 289-307
-
-
Ettensohn, C.A.1
-
84
-
-
0032382962
-
Bottle cells are required for the initiation of primary invagination in the sea urchin embryo.
-
Kimberly EL, Hardin J. Bottle cells are required for the initiation of primary invagination in the sea urchin embryo. Dev Biol 1998, 204:235-250.
-
(1998)
Dev Biol
, vol.204
, pp. 235-250
-
-
Kimberly, E.L.1
Hardin, J.2
-
85
-
-
2742577548
-
The initial phase of gastrulation in sea urchins is accompanied by the formation of bottle cells.
-
Nakajima Y, Burke RD. The initial phase of gastrulation in sea urchins is accompanied by the formation of bottle cells. Dev Biol 1996, 179:436-446.
-
(1996)
Dev Biol
, vol.179
, pp. 436-446
-
-
Nakajima, Y.1
Burke, R.D.2
-
86
-
-
77951217199
-
Apical constriction: a cell shape change that can drive morphogenesis.
-
Sawyer JM, Harrell JR, Shemer G, Sullivan-Brown J, Roh-Johnson M, Goldstein B. Apical constriction: a cell shape change that can drive morphogenesis. Dev Biol 2010, 341:5-19.
-
(2010)
Dev Biol
, vol.341
, pp. 5-19
-
-
Sawyer, J.M.1
Harrell, J.R.2
Shemer, G.3
Sullivan-Brown, J.4
Roh-Johnson, M.5
Goldstein, B.6
-
87
-
-
0027476465
-
A role for regulated secretion of apical extracellular matrix during epithelial invagination in the sea urchin.
-
Lane MC, Koehl MA, Wilt F, Keller R. A role for regulated secretion of apical extracellular matrix during epithelial invagination in the sea urchin. Development 1993, 117:1049-1060.
-
(1993)
Development
, vol.117
, pp. 1049-1060
-
-
Lane, M.C.1
Koehl, M.A.2
Wilt, F.3
Keller, R.4
-
88
-
-
0029005577
-
How do sea urchins invaginate? Using biomechanics to distinguish between mechanisms of primary invagination.
-
Davidson LA, Koehl MA, Keller R, Oster GF. How do sea urchins invaginate? Using biomechanics to distinguish between mechanisms of primary invagination. Development 1995, 121:2005-2018.
-
(1995)
Development
, vol.121
, pp. 2005-2018
-
-
Davidson, L.A.1
Koehl, M.A.2
Keller, R.3
Oster, G.F.4
-
89
-
-
0033562772
-
Measurements of mechanical properties of the blastula wall reveal which hypothesized mechanisms of primary invagination are physically plausible in the sea urchin Strongylocentrotus purpuratus.
-
Davidson LA, Oster GF, Keller RE, Koehl MA. Measurements of mechanical properties of the blastula wall reveal which hypothesized mechanisms of primary invagination are physically plausible in the sea urchin Strongylocentrotus purpuratus. Dev Biol 1999, 209:221-238.
-
(1999)
Dev Biol
, vol.209
, pp. 221-238
-
-
Davidson, L.A.1
Oster, G.F.2
Keller, R.E.3
Koehl, M.A.4
-
90
-
-
1642378927
-
Pigment cells trigger the onset of gastrulation in tropical sea urchin Echinometra mathaei.
-
Takata H, Kominami T. Pigment cells trigger the onset of gastrulation in tropical sea urchin Echinometra mathaei. Dev Growth Differ 2004, 46:23-35.
-
(2004)
Dev Growth Differ
, vol.46
, pp. 23-35
-
-
Takata, H.1
Kominami, T.2
-
91
-
-
33244498052
-
Frizzled5/8 is required in secondary mesenchyme cells to initiate archenteron invagination during sea urchin development.
-
Croce J, Duloquin L, Lhomond G, McClay DR, Gache C. Frizzled5/8 is required in secondary mesenchyme cells to initiate archenteron invagination during sea urchin development. Development 2006, 133:547-557.
-
(2006)
Development
, vol.133
, pp. 547-557
-
-
Croce, J.1
Duloquin, L.2
Lhomond, G.3
McClay, D.R.4
Gache, C.5
-
92
-
-
33646444861
-
RhoA regulates initiation of invagination, but not convergent extension, during sea urchin gastrulation.
-
Beane WS, Gross JM, McClay DR. RhoA regulates initiation of invagination, but not convergent extension, during sea urchin gastrulation. Dev Biol 2006, 292:213-225.
-
(2006)
Dev Biol
, vol.292
, pp. 213-225
-
-
Beane, W.S.1
Gross, J.M.2
McClay, D.R.3
-
93
-
-
0022330107
-
Gastrulation in the sea urchin embryo is accompanied by the rearrangement of invaginating epithelial cells.
-
Ettensohn CA. Gastrulation in the sea urchin embryo is accompanied by the rearrangement of invaginating epithelial cells. Dev Biol 1985, 112:383-390.
-
(1985)
Dev Biol
, vol.112
, pp. 383-390
-
-
Ettensohn, C.A.1
-
94
-
-
0024306268
-
Local shifts in position and polarized motility drive cell rearrangement during sea urchin gastrulation.
-
Hardin J. Local shifts in position and polarized motility drive cell rearrangement during sea urchin gastrulation. Dev Biol 1989, 136:430-445.
-
(1989)
Dev Biol
, vol.136
, pp. 430-445
-
-
Hardin, J.1
-
95
-
-
0022900061
-
The mechanisms and mechanics of archenteron elongation during sea urchin gastrulation.
-
Hardin JD, Cheng LY. The mechanisms and mechanics of archenteron elongation during sea urchin gastrulation. Dev Biol 1986, 115:490-501.
-
(1986)
Dev Biol
, vol.115
, pp. 490-501
-
-
Hardin, J.D.1
Cheng, L.Y.2
-
96
-
-
0025115888
-
Target recognition by the archenteron during sea urchin gastrulation.
-
Hardin J, McClay DR. Target recognition by the archenteron during sea urchin gastrulation. Dev Biol 1990, 142:86-102.
-
(1990)
Dev Biol
, vol.142
, pp. 86-102
-
-
Hardin, J.1
McClay, D.R.2
-
97
-
-
84886269270
-
Mechanisms of filopodial guidance during sea urchin gastrulation.
-
Hardin J, Morrill J, McClay D. Mechanisms of filopodial guidance during sea urchin gastrulation. J. Cell Biol 1988, 107:814a.
-
(1988)
J. Cell Biol
, vol.107
-
-
Hardin, J.1
Morrill, J.2
McClay, D.3
-
98
-
-
0032526162
-
Cells are added to the archenteron during and following secondary invagination in the sea urchin Lytechinus variegatus.
-
Martins GG, Summers RG, Morrill JB. Cells are added to the archenteron during and following secondary invagination in the sea urchin Lytechinus variegatus. Dev Biol 1998, 198:330-342.
-
(1998)
Dev Biol
, vol.198
, pp. 330-342
-
-
Martins, G.G.1
Summers, R.G.2
Morrill, J.B.3
-
99
-
-
0032261408
-
Characterization of involution during sea urchin gastrulation using two-photon excited photorelease and confocal microscopy.
-
Piston DW, Summers RG, Knobel SM, Morrill JB. Characterization of involution during sea urchin gastrulation using two-photon excited photorelease and confocal microscopy. Microsc Microanal 1998, 4:404-414.
-
(1998)
Microsc Microanal
, vol.4
, pp. 404-414
-
-
Piston, D.W.1
Summers, R.G.2
Knobel, S.M.3
Morrill, J.B.4
-
100
-
-
67349171520
-
A perturbation model of the gene regulatory network for oral and aboral ectoderm specification in the sea urchin embryo.
-
Su YH, Li E, Geiss GK, Longabaugh WJ, Kramer A, Davidson EH. A perturbation model of the gene regulatory network for oral and aboral ectoderm specification in the sea urchin embryo. Dev Biol 2009, 329:410-421.
-
(2009)
Dev Biol
, vol.329
, pp. 410-421
-
-
Su, Y.H.1
Li, E.2
Geiss, G.K.3
Longabaugh, W.J.4
Kramer, A.5
Davidson, E.H.6
-
101
-
-
73649110278
-
Nodal and BMP2/4 pattern the mesoderm and endoderm during development of the sea urchin embryo.
-
Duboc V, Lapraz F, Saudemont A, Bessodes N, Mekpoh F, Haillot E, Quirin M, Lepage T. Nodal and BMP2/4 pattern the mesoderm and endoderm during development of the sea urchin embryo. Development 2010, 137:223-235.
-
(2010)
Development
, vol.137
, pp. 223-235
-
-
Duboc, V.1
Lapraz, F.2
Saudemont, A.3
Bessodes, N.4
Mekpoh, F.5
Haillot, E.6
Quirin, M.7
Lepage, T.8
|