메뉴 건너뛰기




Volumn 1, Issue 2, 2012, Pages 231-252

Morphogenesis in sea urchin embryos: Linking cellular events to gene regulatory network states

Author keywords

[No Author keywords available]

Indexed keywords

BETA CATENIN; BONE MORPHOGENETIC PROTEIN 2; BONE MORPHOGENETIC PROTEIN 4; CADHERIN; FIBROBLAST GROWTH FACTOR RECEPTOR 2; GOOSECOID PROTEIN; LAMININ; LYMPHOID ENHANCER FACTOR 1; MSP130 PROTEIN; NOTCH RECEPTOR; PEPTIDES AND PROTEINS; PROTEIN NODAL; RHOA GUANINE NUCLEOTIDE BINDING PROTEIN; T CELL FACTOR PROTEIN; TRANSCRIPTION FACTOR DRI; TRANSCRIPTION FACTOR ERG; TRANSCRIPTION FACTOR ETV6; TRANSCRIPTION FACTOR FOXB; TRANSCRIPTION FACTOR FOXN2; TRANSCRIPTION FACTOR FOXN3; TRANSCRIPTION FACTOR FOXO; TRANSCRIPTION FACTOR HESC; TRANSCRIPTION FACTOR HEX; TRANSCRIPTION FACTOR PMAR1; TRANSCRIPTION FACTOR SNAIL; TRANSCRIPTION FACTOR TGIF; TRANSCRIPTION FACTOR TWIST; UNCLASSIFIED DRUG; UNINDEXED DRUG; VASCULOTROPIN RECEPTOR; WNT PROTEIN;

EID: 84868116085     PISSN: 17597684     EISSN: 17597692     Source Type: Journal    
DOI: 10.1002/wdev.18     Document Type: Article
Times cited : (41)

References (101)
  • 2
    • 0000887517 scopus 로고
    • Entwicklungsmechanische Studien. I. Der Werth der beiden ersten Furchungszellen in der Echinodermenentwickelung.
    • Driesch H. Entwicklungsmechanische Studien. I. Der Werth der beiden ersten Furchungszellen in der Echinodermenentwickelung. Zeitschr Wiss Zool 1891, 53:160-182.
    • (1891) Zeitschr Wiss Zool , vol.53 , pp. 160-182
    • Driesch, H.1
  • 3
    • 0001769577 scopus 로고
    • Uber mehrpolige mitosen als mittel zur analyse des zellkerns.
    • Boveri T. Uber mehrpolige mitosen als mittel zur analyse des zellkerns. Verh d phys-med Ges Wursburg N F 1902, 35:67-90.
    • (1902) Verh d phys-med Ges Wursburg N F , vol.35 , pp. 67-90
    • Boveri, T.1
  • 4
    • 51249192810 scopus 로고
    • Zwei Fehlerquellen bei Merogoniegversuchen und die Entwicklungsfähigkeit merogonischer partiellmerogonischer Seeigelbastarde.
    • Boveri T. Zwei Fehlerquellen bei Merogoniegversuchen und die Entwicklungsfähigkeit merogonischer partiellmerogonischer Seeigelbastarde. Arch Entwicklungsmech Org 1918, 44:417-471.
    • (1918) Arch Entwicklungsmech Org , vol.44 , pp. 417-471
    • Boveri, T.1
  • 5
    • 78149412083 scopus 로고
    • The mechanics of sea urchin development as studied by operative methods.
    • Horstadius S. The mechanics of sea urchin development as studied by operative methods. Biol Rev 1939, 14:132-179.
    • (1939) Biol Rev , vol.14 , pp. 132-179
    • Horstadius, S.1
  • 6
    • 0002768045 scopus 로고
    • Experiments concerning the cleavage stimulus in sand dollar eggs.
    • Rapaport R. Experiments concerning the cleavage stimulus in sand dollar eggs. J Exp Zool 1961, 148:81-89.
    • (1961) J Exp Zool , vol.148 , pp. 81-89
    • Rapaport, R.1
  • 8
    • 43149086112 scopus 로고    scopus 로고
    • Global regulatory logic for specification of an embryonic cell lineage.
    • Oliveri P, Tu Q, Davidson EH. Global regulatory logic for specification of an embryonic cell lineage. Proc Natl Acad Sci U S A 2008, 105:5955-5962.
    • (2008) Proc Natl Acad Sci U S A , vol.105 , pp. 5955-5962
    • Oliveri, P.1    Tu, Q.2    Davidson, E.H.3
  • 9
    • 77951205560 scopus 로고    scopus 로고
    • The endoderm gene regulatory network in sea urchin embryos up to mid-blastula stage.
    • Peter IS, Davidson EH. The endoderm gene regulatory network in sea urchin embryos up to mid-blastula stage. Dev Biol 2010, 340:188-199.
    • (2010) Dev Biol , vol.340 , pp. 188-199
    • Peter, I.S.1    Davidson, E.H.2
  • 10
    • 78650362376 scopus 로고    scopus 로고
    • Emerging properties of animal gene regulatory networks.
    • Davidson EH. Emerging properties of animal gene regulatory networks. Nature 2010, 468:911-920.
    • (2010) Nature , vol.468 , pp. 911-920
    • Davidson, E.H.1
  • 12
    • 77956628617 scopus 로고    scopus 로고
    • High accuracy, high-resolution prevalence measurement for the majority of locally expressed regulatory genes in early sea urchin development.
    • Materna SC, Nam J, Davidson EH. High accuracy, high-resolution prevalence measurement for the majority of locally expressed regulatory genes in early sea urchin development. Gene Expr Patterns 2010, 10:177-184.
    • (2010) Gene Expr Patterns , vol.10 , pp. 177-184
    • Materna, S.C.1    Nam, J.2    Davidson, E.H.3
  • 15
    • 71149089027 scopus 로고    scopus 로고
    • Network design principles from the sea urchin embryo.
    • Davidson EH. Network design principles from the sea urchin embryo. Curr Opin Genet Dev 2009, 19:535-540.
    • (2009) Curr Opin Genet Dev , vol.19 , pp. 535-540
    • Davidson, E.H.1
  • 16
    • 60749129310 scopus 로고    scopus 로고
    • Lessons from a gene regulatory network: echinoderm skeletogenesis provides insights into evolution, plasticity and morphogenesis.
    • Ettensohn CA. Lessons from a gene regulatory network: echinoderm skeletogenesis provides insights into evolution, plasticity and morphogenesis. Development 2009, 136:11-21.
    • (2009) Development , vol.136 , pp. 11-21
    • Ettensohn, C.A.1
  • 17
    • 43149126104 scopus 로고    scopus 로고
    • Transfer of a large gene regulatory apparatus to a new developmental address in echinoid evolution.
    • Gao F, Davidson EH. Transfer of a large gene regulatory apparatus to a new developmental address in echinoid evolution. Proc Natl Acad Sci U S A 2008, 105:6091-6096.
    • (2008) Proc Natl Acad Sci U S A , vol.105 , pp. 6091-6096
    • Gao, F.1    Davidson, E.H.2
  • 18
    • 64249101543 scopus 로고    scopus 로고
    • Evolution of gene regulatory network architectures: examples of subcircuit conservation and plasticity between classes of echinoderms.
    • Hinman VF, Yankura KA, McCauley BS. Evolution of gene regulatory network architectures: examples of subcircuit conservation and plasticity between classes of echinoderms. Biochim Biophys Acta 2009, 1789:326-332.
    • (2009) Biochim Biophys Acta , vol.1789 , pp. 326-332
    • Hinman, V.F.1    Yankura, K.A.2    McCauley, B.S.3
  • 19
    • 0037534978 scopus 로고    scopus 로고
    • Patterning the sea urchin embryo: gene regulatory networks, signaling pathways, and cellular interactions.
    • Angerer LM, Angerer RC. Patterning the sea urchin embryo: gene regulatory networks, signaling pathways, and cellular interactions. Curr Top Dev Biol 2003, 53:159-198.
    • (2003) Curr Top Dev Biol , vol.53 , pp. 159-198
    • Angerer, L.M.1    Angerer, R.C.2
  • 21
    • 0030831284 scopus 로고    scopus 로고
    • The allocation of early blastomeres to the ectoderm and endoderm is variable in the sea urchin embryo.
    • Logan CY, McClay DR. The allocation of early blastomeres to the ectoderm and endoderm is variable in the sea urchin embryo. Development 1997, 124:2213-2223.
    • (1997) Development , vol.124 , pp. 2213-2223
    • Logan, C.Y.1    McClay, D.R.2
  • 22
    • 78751474548 scopus 로고    scopus 로고
    • Small micromeres contribute to the germline in the sea urchin.
    • Yajima M, Wessel GM. Small micromeres contribute to the germline in the sea urchin. Development 2011, 138:237-243.
    • (2011) Development , vol.138 , pp. 237-243
    • Yajima, M.1    Wessel, G.M.2
  • 23
    • 37749044978 scopus 로고    scopus 로고
    • A conserved role for the nodal signaling pathway in the establishment of dorso-ventral and left-right axes in deuterostomes.
    • Duboc V, Lepage T. A conserved role for the nodal signaling pathway in the establishment of dorso-ventral and left-right axes in deuterostomes. J Exp Zool B Mol Dev Evol 2008, 310:41-53.
    • (2008) J Exp Zool B Mol Dev Evol , vol.310 , pp. 41-53
    • Duboc, V.1    Lepage, T.2
  • 24
    • 72949097669 scopus 로고    scopus 로고
    • Patterning of the dorsal-ventral axis in echinoderms: insights into the evolution of the BMP-chordin signaling network.
    • Lapraz F, Besnardeau L, Lepage T. Patterning of the dorsal-ventral axis in echinoderms: insights into the evolution of the BMP-chordin signaling network. PLoS Biol 2009, 7:e1000248.
    • (2009) PLoS Biol , vol.7
    • Lapraz, F.1    Besnardeau, L.2    Lepage, T.3
  • 25
    • 0004046537 scopus 로고
    • Embryonic development of the brittle-star Amphipholis kochii in laboratory culture.
    • Yamashita M. Embryonic development of the brittle-star Amphipholis kochii in laboratory culture. Biol Bull 1985, 169:131-142.
    • (1985) Biol Bull , vol.169 , pp. 131-142
    • Yamashita, M.1
  • 26
    • 34347241738 scopus 로고    scopus 로고
    • A switch in the cellular basis of skeletogenesis in late-stage sea urchin larvae.
    • Yajima M. A switch in the cellular basis of skeletogenesis in late-stage sea urchin larvae. Dev Biol 2007, 307:272-281.
    • (2007) Dev Biol , vol.307 , pp. 272-281
    • Yajima, M.1
  • 27
    • 0032914194 scopus 로고    scopus 로고
    • Nuclear β-catenin is required to specify vegetal cell fates in the sea urchin embryo.
    • Logan CY, Miller JR, Ferkowicz MJ, McClay DR. Nuclear β-catenin is required to specify vegetal cell fates in the sea urchin embryo. Development 1999, 126:345-357.
    • (1999) Development , vol.126 , pp. 345-357
    • Logan, C.Y.1    Miller, J.R.2    Ferkowicz, M.J.3    McClay, D.R.4
  • 28
    • 0032483023 scopus 로고    scopus 로고
    • β-Catenin is essential for patterning the maternally specified animal-vegetal axis in the sea urchin embryo.
    • Wikramanayake AH, Huang L, Klein WH. β-Catenin is essential for patterning the maternally specified animal-vegetal axis in the sea urchin embryo. Proc Natl Acad Sci U S A 1998, 95:9343-9348.
    • (1998) Proc Natl Acad Sci U S A , vol.95 , pp. 9343-9348
    • Wikramanayake, A.H.1    Huang, L.2    Klein, W.H.3
  • 29
    • 77957213909 scopus 로고
    • Spicule formation by isolated micromeres of the sea urchin embryo.
    • Okazaki K. Spicule formation by isolated micromeres of the sea urchin embryo. Amer Zool 1975, 15:567-581.
    • (1975) Amer Zool , vol.15 , pp. 567-581
    • Okazaki, K.1
  • 30
    • 34547624884 scopus 로고    scopus 로고
    • A missing link in the sea urchin embryo gene regulatory network: hesC and the double-negative specification of micromeres.
    • Revilla-i-Domingo R, Oliveri P, Davidson EH. A missing link in the sea urchin embryo gene regulatory network: hesC and the double-negative specification of micromeres. Proc Natl Acad Sci U S A 2007, 104:12383-12388.
    • (2007) Proc Natl Acad Sci U S A , vol.104 , pp. 12383-12388
    • Revilla-i-Domingo, R.1    Oliveri, P.2    Davidson, E.H.3
  • 31
    • 77950494318 scopus 로고    scopus 로고
    • Activation of the skeletogenic gene regulatory network in the early sea urchin embryo.
    • Sharma T, Ettensohn CA. Activation of the skeletogenic gene regulatory network in the early sea urchin embryo. Development 2010, 137:1149-1157.
    • (2010) Development , vol.137 , pp. 1149-1157
    • Sharma, T.1    Ettensohn, C.A.2
  • 32
    • 0028802423 scopus 로고
    • Micromeres are required for normal vegetal plate specification in sea urchin embryos.
    • Ransick A, Davidson EH. Micromeres are required for normal vegetal plate specification in sea urchin embryos. Development 1995, 121:3215-3222.
    • (1995) Development , vol.121 , pp. 3215-3222
    • Ransick, A.1    Davidson, E.H.2
  • 33
    • 61349182003 scopus 로고    scopus 로고
    • Gene regulatory network interactions in sea urchin endomesoderm induction.
    • Sethi AJ, Angerer RC, Angerer LM. Gene regulatory network interactions in sea urchin endomesoderm induction. PLoS Biol 2009, 7:248-264.
    • (2009) PLoS Biol , vol.7 , pp. 248-264
    • Sethi, A.J.1    Angerer, R.C.2    Angerer, L.M.3
  • 34
    • 58149490721 scopus 로고    scopus 로고
    • Gene regulatory network subcircuit controlling a dynamic spatial pattern of signaling in the sea urchin embryo.
    • Smith J, Davidson EH. Gene regulatory network subcircuit controlling a dynamic spatial pattern of signaling in the sea urchin embryo. Proc Natl Acad Sci U S A 2008, 105:20089-20094.
    • (2008) Proc Natl Acad Sci U S A , vol.105 , pp. 20089-20094
    • Smith, J.1    Davidson, E.H.2
  • 35
    • 4043087613 scopus 로고    scopus 로고
    • Nuclear β-catenin-dependent Wnt8 signaling in vegetal cells of the early sea urchin embryo regulates gastrulation and differentiation of endoderm and mesodermal cell lineages.
    • Wikramanayake AH, Peterson R, Chen J, Huang L, Bince JM, McClay DR, Klein WH. Nuclear β-catenin-dependent Wnt8 signaling in vegetal cells of the early sea urchin embryo regulates gastrulation and differentiation of endoderm and mesodermal cell lineages. Genesis 2004, 39:194-205.
    • (2004) Genesis , vol.39 , pp. 194-205
    • Wikramanayake, A.H.1    Peterson, R.2    Chen, J.3    Huang, L.4    Bince, J.M.5    McClay, D.R.6    Klein, W.H.7
  • 36
    • 0030804543 scopus 로고    scopus 로고
    • Identification and localization of a sea urchin Notch homologue: insights into vegetal plate regionalization and Notch receptor regulation.
    • Sherwood DR, McClay DR. Identification and localization of a sea urchin Notch homologue: insights into vegetal plate regionalization and Notch receptor regulation. Development 1997, 124:3363-3374.
    • (1997) Development , vol.124 , pp. 3363-3374
    • Sherwood, D.R.1    McClay, D.R.2
  • 37
    • 0032934519 scopus 로고    scopus 로고
    • LvNotch signaling mediates secondary mesenchyme specification in the sea urchin embryo.
    • Sherwood DR, McClay DR. LvNotch signaling mediates secondary mesenchyme specification in the sea urchin embryo. Development 1999, 126:1703-1713.
    • (1999) Development , vol.126 , pp. 1703-1713
    • Sherwood, D.R.1    McClay, D.R.2
  • 38
    • 0036333533 scopus 로고    scopus 로고
    • LvDelta is a mesoderm-inducing signal in the sea urchin embryo and can endow blastomeres with organizer-like properties.
    • Sweet HC, Gehring M, Ettensohn CA. LvDelta is a mesoderm-inducing signal in the sea urchin embryo and can endow blastomeres with organizer-like properties. Development 2002, 129:1945-1955.
    • (2002) Development , vol.129 , pp. 1945-1955
    • Sweet, H.C.1    Gehring, M.2    Ettensohn, C.A.3
  • 39
    • 46449135120 scopus 로고    scopus 로고
    • Cell-cell adhesion in the cnidaria: insights into the evolution of tissue morphogenesis.
    • Magie CR, Martindale MQ. Cell-cell adhesion in the cnidaria: insights into the evolution of tissue morphogenesis. Biol Bull 2008, 214:218-232.
    • (2008) Biol Bull , vol.214 , pp. 218-232
    • Magie, C.R.1    Martindale, M.Q.2
  • 40
    • 77954860342 scopus 로고    scopus 로고
    • Epithelial-mesenchymal transition in cancer: parallels between normal development and tumor progression.
    • Micalizzi D, Farabaugh S, Ford H. Epithelial-mesenchymal transition in cancer: parallels between normal development and tumor progression. J Mammary Gland Biol Neoplasia 2010, 15:117-134.
    • (2010) J Mammary Gland Biol Neoplasia , vol.15 , pp. 117-134
    • Micalizzi, D.1    Farabaugh, S.2    Ford, H.3
  • 41
    • 0036439238 scopus 로고    scopus 로고
    • Molecular mechanisms of epithelial morphogenesis.
    • Schock F, Perrimon N. Molecular mechanisms of epithelial morphogenesis. Annu Rev Cell Dev Biol 2002, 18:463-493.
    • (2002) Annu Rev Cell Dev Biol , vol.18 , pp. 463-493
    • Schock, F.1    Perrimon, N.2
  • 42
    • 0038022709 scopus 로고    scopus 로고
    • Activation of pmar1 controls specification of micromeres in the sea urchin embryo.
    • Oliveri P, Davidson EH, McClay DR. Activation of pmar1 controls specification of micromeres in the sea urchin embryo. Dev Biol 2003, 258:32-43.
    • (2003) Dev Biol , vol.258 , pp. 32-43
    • Oliveri, P.1    Davidson, E.H.2    McClay, D.R.3
  • 43
    • 0036607107 scopus 로고    scopus 로고
    • A regulatory gene network that directs micromere specification in the sea urchin embryo.
    • Oliveri P, Carrick DM, Davidson EH. A regulatory gene network that directs micromere specification in the sea urchin embryo. Dev Biol 2002, 246:209-228.
    • (2002) Dev Biol , vol.246 , pp. 209-228
    • Oliveri, P.1    Carrick, D.M.2    Davidson, E.H.3
  • 44
    • 46049114056 scopus 로고    scopus 로고
    • Twist is an essential regulator of the skeletogenic gene regulatory network in the sea urchin embryo.
    • Wu SY, Yang YP, McClay DR. Twist is an essential regulator of the skeletogenic gene regulatory network in the sea urchin embryo. Dev Biol 2008, 319:406-415.
    • (2008) Dev Biol , vol.319 , pp. 406-415
    • Wu, S.Y.1    Yang, Y.P.2    McClay, D.R.3
  • 45
    • 34247330636 scopus 로고    scopus 로고
    • The Snail repressor is required for PMC ingression in the sea urchin embryo.
    • Wu SY, McClay DR. The Snail repressor is required for PMC ingression in the sea urchin embryo. Development 2007, 134:1061-1070.
    • (2007) Development , vol.134 , pp. 1061-1070
    • Wu, S.Y.1    McClay, D.R.2
  • 46
    • 79951538623 scopus 로고    scopus 로고
    • The control of foxN2/3 expression in sea urchin embryos and its function in the skeletogenic gene regulatory network.
    • Rho HK, McClay DR. The control of foxN2/3 expression in sea urchin embryos and its function in the skeletogenic gene regulatory network. Development 2011, 138:937-945.
    • (2011) Development , vol.138 , pp. 937-945
    • Rho, H.K.1    McClay, D.R.2
  • 47
    • 58149481232 scopus 로고    scopus 로고
    • Properties of developmental gene regulatory networks.
    • Davidson EH, Levine MS. Properties of developmental gene regulatory networks. Proc Natl Acad Sci U S A 2008, 105:20063-20066.
    • (2008) Proc Natl Acad Sci U S A , vol.105 , pp. 20063-20066
    • Davidson, E.H.1    Levine, M.S.2
  • 48
    • 70849130706 scopus 로고    scopus 로고
    • Regulative recovery in the sea urchin embryo and the stabilizing role of fail-safe gene network wiring.
    • Smith J, Davidson EH. Regulative recovery in the sea urchin embryo and the stabilizing role of fail-safe gene network wiring. Proc Natl Acad Sci U S A 2009, 106:18291-18296.
    • (2009) Proc Natl Acad Sci U S A , vol.106 , pp. 18291-18296
    • Smith, J.1    Davidson, E.H.2
  • 49
    • 0019803969 scopus 로고
    • Ultrastructural and time-lapse studies of primary mesenchyme cell behavior in normal and sulfate-deprived sea urchin embryos.
    • Katow H, Solursh M. Ultrastructural and time-lapse studies of primary mesenchyme cell behavior in normal and sulfate-deprived sea urchin embryos. Exp Cell Res 1981, 136:233-245.
    • (1981) Exp Cell Res , vol.136 , pp. 233-245
    • Katow, H.1    Solursh, M.2
  • 50
    • 0031573934 scopus 로고    scopus 로고
    • Characterization of the role of cadherin in regulating cell adhesion during sea urchin development.
    • Miller JR, McClay DR. Characterization of the role of cadherin in regulating cell adhesion during sea urchin development. Dev Biol 1997, 192:323-339.
    • (1997) Dev Biol , vol.192 , pp. 323-339
    • Miller, J.R.1    McClay, D.R.2
  • 51
    • 0037330641 scopus 로고    scopus 로고
    • Primary mesenchyme cell patterning during the early stages following ingression.
    • Peterson RE, McClay DR. Primary mesenchyme cell patterning during the early stages following ingression. Dev Biol 2003, 254:68-78.
    • (2003) Dev Biol , vol.254 , pp. 68-78
    • Peterson, R.E.1    McClay, D.R.2
  • 52
    • 0021951808 scopus 로고
    • Three cell recognition changes accompany the ingression of sea urchin primary mesenchyme cells.
    • Fink RD, McClay DR. Three cell recognition changes accompany the ingression of sea urchin primary mesenchyme cells. Dev Biol 1985, 107:66-74.
    • (1985) Dev Biol , vol.107 , pp. 66-74
    • Fink, R.D.1    McClay, D.R.2
  • 53
    • 0033084189 scopus 로고    scopus 로고
    • αSU2, an epithelial integrin that binds laminin in the sea urchin embryo.
    • Hertzler PL, McClay DR. αSU2, an epithelial integrin that binds laminin in the sea urchin embryo. Dev Biol 1999, 207:1-13.
    • (1999) Dev Biol , vol.207 , pp. 1-13
    • Hertzler, P.L.1    McClay, D.R.2
  • 54
    • 0031573809 scopus 로고    scopus 로고
    • Changes in the pattern of adherens junction-associated β-catenin accompany morphogenesis in the sea urchin embryo.
    • Miller JR, McClay DR. Changes in the pattern of adherens junction-associated β-catenin accompany morphogenesis in the sea urchin embryo. Dev Biol 1997, 192:310-322.
    • (1997) Dev Biol , vol.192 , pp. 310-322
    • Miller, J.R.1    McClay, D.R.2
  • 55
    • 0023204082 scopus 로고
    • A sea urchin primary mesenchyme cell surface protein, msp130, defined by cDNA probes and antibody to fusion protein.
    • Leaf DS, Anstrom JA, Chin JE, Harkey MA, Raff RA. A sea urchin primary mesenchyme cell surface protein, msp130, defined by cDNA probes and antibody to fusion protein. Dev Biol 1987, 121:29-40.
    • (1987) Dev Biol , vol.121 , pp. 29-40
    • Leaf, D.S.1    Anstrom, J.A.2    Chin, J.E.3    Harkey, M.A.4    Raff, R.A.5
  • 56
    • 34347326245 scopus 로고    scopus 로고
    • Localized VEGF signaling from ectoderm to mesenchyme cells controls morphogenesis of the sea urchin embryo skeleton.
    • Duloquin L, Lhomond G, Gache C. Localized VEGF signaling from ectoderm to mesenchyme cells controls morphogenesis of the sea urchin embryo skeleton. Development 2007, 134:2293-2302.
    • (2007) Development , vol.134 , pp. 2293-2302
    • Duloquin, L.1    Lhomond, G.2    Gache, C.3
  • 57
    • 0027062705 scopus 로고
    • Microfilaments, cell shape changes, and the formation of primary mesenchyme in sea urchin embryos.
    • Anstrom JA. Microfilaments, cell shape changes, and the formation of primary mesenchyme in sea urchin embryos. J Exp Zool 1992, 264:312-322.
    • (1992) J Exp Zool , vol.264 , pp. 312-322
    • Anstrom, J.A.1
  • 58
    • 0024545609 scopus 로고
    • Sea urchin primary mesenchyme cells: ingression occurs independent of microtubules.
    • Anstrom JA. Sea urchin primary mesenchyme cells: ingression occurs independent of microtubules. Dev Biol 1989, 131:269-275.
    • (1989) Dev Biol , vol.131 , pp. 269-275
    • Anstrom, J.A.1
  • 60
    • 0036768630 scopus 로고    scopus 로고
    • SpADAM, a sea urchin ADAM, has conserved structure and expression.
    • Rise M, Burke RD. SpADAM, a sea urchin ADAM, has conserved structure and expression. Mech Dev 2002, 117:275-281.
    • (2002) Mech Dev , vol.117 , pp. 275-281
    • Rise, M.1    Burke, R.D.2
  • 61
    • 0029073651 scopus 로고
    • Dynamics of thin filopodia during sea urchin gastrulation.
    • Miller J, Fraser SE, McClay D. Dynamics of thin filopodia during sea urchin gastrulation. Development 1995, 121:2501-2511.
    • (1995) Development , vol.121 , pp. 2501-2511
    • Miller, J.1    Fraser, S.E.2    McClay, D.3
  • 62
    • 0029557107 scopus 로고
    • Four-dimensional microscopic analysis of the filopodial behavior of primary mesenchyme cells during gastrulation in the sea urchin embryo.
    • Malinda KM, Fisher GW, Ettensohn CA. Four-dimensional microscopic analysis of the filopodial behavior of primary mesenchyme cells during gastrulation in the sea urchin embryo. Dev Biol 1995, 172:552-566.
    • (1995) Dev Biol , vol.172 , pp. 552-566
    • Malinda, K.M.1    Fisher, G.W.2    Ettensohn, C.A.3
  • 63
    • 0028095498 scopus 로고
    • Primary mesenchyme cell migration in the sea urchin embryo: distribution of directional cues.
    • Malinda KM, Ettensohn CA. Primary mesenchyme cell migration in the sea urchin embryo: distribution of directional cues. Dev Biol 1994, 164:562-578.
    • (1994) Dev Biol , vol.164 , pp. 562-578
    • Malinda, K.M.1    Ettensohn, C.A.2
  • 64
    • 0033573139 scopus 로고    scopus 로고
    • The role of thin filopodia in motility and morphogenesis.
    • McClay DR. The role of thin filopodia in motility and morphogenesis. Exp Cell Res 1999, 253:296-301.
    • (1999) Exp Cell Res , vol.253 , pp. 296-301
    • McClay, D.R.1
  • 65
    • 0032126725 scopus 로고    scopus 로고
    • The dynamics and regulation of mesenchymal cell fusion in the sea urchin embryo.
    • Hodor PG, Ettensohn CA. The dynamics and regulation of mesenchymal cell fusion in the sea urchin embryo. Dev Biol 1998, 199:111-124.
    • (1998) Dev Biol , vol.199 , pp. 111-124
    • Hodor, P.G.1    Ettensohn, C.A.2
  • 66
    • 0035983638 scopus 로고    scopus 로고
    • Biomineralization of the spicules of sea urchin embryos.
    • Wilt FH. Biomineralization of the spicules of sea urchin embryos. Zoolog Sci 2002, 19:253-261.
    • (2002) Zoolog Sci , vol.19 , pp. 253-261
    • Wilt, F.H.1
  • 67
    • 0026478840 scopus 로고
    • Commitment along the dorsoventral axis of the sea urchin embryo is altered in response to NiCl2.
    • Hardin J, Coffman JA, Black SD, McClay DR. Commitment along the dorsoventral axis of the sea urchin embryo is altered in response to NiCl2. Development 1992, 116:671-685.
    • (1992) Development , vol.116 , pp. 671-685
    • Hardin, J.1    Coffman, J.A.2    Black, S.D.3    McClay, D.R.4
  • 68
    • 0028258119 scopus 로고
    • Skeletal pattern is specified autonomously by the primary mesenchyme cells in sea urchin embryos.
    • Armstrong N, McClay DR. Skeletal pattern is specified autonomously by the primary mesenchyme cells in sea urchin embryos. Dev Biol 1994, 162:329-338.
    • (1994) Dev Biol , vol.162 , pp. 329-338
    • Armstrong, N.1    McClay, D.R.2
  • 69
    • 12144288504 scopus 로고    scopus 로고
    • Nodal and BMP2/4 signaling organizes the oral-aboral axis of the sea urchin embryo.
    • Duboc V, Rottinger E, Besnardeau L, Lepage T. Nodal and BMP2/4 signaling organizes the oral-aboral axis of the sea urchin embryo. Dev Cell 2004, 6:397-410.
    • (2004) Dev Cell , vol.6 , pp. 397-410
    • Duboc, V.1    Rottinger, E.2    Besnardeau, L.3    Lepage, T.4
  • 70
    • 0027379438 scopus 로고
    • Cell-cell interactions regulate skeleton formation in the sea urchin embryo.
    • Armstrong N, Hardin J, McClay DR. Cell-cell interactions regulate skeleton formation in the sea urchin embryo. Development 1993, 119:833-840.
    • (1993) Development , vol.119 , pp. 833-840
    • Armstrong, N.1    Hardin, J.2    McClay, D.R.3
  • 71
    • 0027101818 scopus 로고
    • Pattern formation during gastrulation in the sea urchin embryo.
    • McClay DR, Armstrong NA, Hardin J. Pattern formation during gastrulation in the sea urchin embryo. Dev Suppl 1992, 33-41.
    • (1992) Dev Suppl , pp. 33-41
    • McClay, D.R.1    Armstrong, N.A.2    Hardin, J.3
  • 72
    • 43049116104 scopus 로고    scopus 로고
    • The dynamics of secretion during sea urchin embryonic skeleton formation.
    • Wilt FH, Killian CE, Hamilton P, Croker L. The dynamics of secretion during sea urchin embryonic skeleton formation. Exp Cell Res 2008, 314:1744-1752.
    • (2008) Exp Cell Res , vol.314 , pp. 1744-1752
    • Wilt, F.H.1    Killian, C.E.2    Hamilton, P.3    Croker, L.4
  • 73
    • 14844300874 scopus 로고    scopus 로고
    • Developmental biology meets materials science: morphogenesis of biomineralized structures.
    • Wilt FH. Developmental biology meets materials science: morphogenesis of biomineralized structures. Dev Biol 2005, 280:15-25.
    • (2005) Dev Biol , vol.280 , pp. 15-25
    • Wilt, F.H.1
  • 74
    • 57349194256 scopus 로고    scopus 로고
    • Molecular aspects of biomineralization of the echinoderm endoskeleton.
    • Killian CE, Wilt FH. Molecular aspects of biomineralization of the echinoderm endoskeleton. Chem Rev 2008, 108:4463-4474.
    • (2008) Chem Rev , vol.108 , pp. 4463-4474
    • Killian, C.E.1    Wilt, F.H.2
  • 75
    • 0023489922 scopus 로고
    • Localization and expression of msp130, a primary mesenchyme lineage-specific cell surface protein in the sea urchin embryo.
    • Anstrom JA, Chin JE, Leaf DS, Parks AL, Raff RA. Localization and expression of msp130, a primary mesenchyme lineage-specific cell surface protein in the sea urchin embryo. Development 1987, 101:255-265.
    • (1987) Development , vol.101 , pp. 255-265
    • Anstrom, J.A.1    Chin, J.E.2    Leaf, D.S.3    Parks, A.L.4    Raff, R.A.5
  • 76
    • 0022353920 scopus 로고
    • Sequential expression of germ-layer specific molecules in the sea urchin embryo.
    • Wessel GM, McClay DR. Sequential expression of germ-layer specific molecules in the sea urchin embryo. Dev Biol 1985, 111:451-463.
    • (1985) Dev Biol , vol.111 , pp. 451-463
    • Wessel, G.M.1    McClay, D.R.2
  • 77
    • 0023258292 scopus 로고
    • A lineage-specific gene encoding a major matrix protein of the sea urchin embryo spicule. I. Authentication of the cloned gene and its developmental expression.
    • Benson S, Sucov H, Stephens L, Davidson E, Wilt F. A lineage-specific gene encoding a major matrix protein of the sea urchin embryo spicule. I. Authentication of the cloned gene and its developmental expression. Dev Biol 1987, 120:499-506.
    • (1987) Dev Biol , vol.120 , pp. 499-506
    • Benson, S.1    Sucov, H.2    Stephens, L.3    Davidson, E.4    Wilt, F.5
  • 78
    • 38949085860 scopus 로고    scopus 로고
    • FGF signals guide migration of mesenchymal cells, control skeletal morphogenesis [corrected] and regulate gastrulation during sea urchin development.
    • Rottinger E, Saudemont A, Duboc V, Besnardeau L, McClay D, Lepage T. FGF signals guide migration of mesenchymal cells, control skeletal morphogenesis [corrected] and regulate gastrulation during sea urchin development. Development 2008, 135:353-365.
    • (2008) Development , vol.135 , pp. 353-365
    • Rottinger, E.1    Saudemont, A.2    Duboc, V.3    Besnardeau, L.4    McClay, D.5    Lepage, T.6
  • 80
    • 12244259068 scopus 로고    scopus 로고
    • Identification and developmental expression of new biomineralization proteins in the sea urchin Strongylocentrotus purpuratus.
    • Illies MR, Peeler MT, Dechtiaruk AM, Ettensohn CA. Identification and developmental expression of new biomineralization proteins in the sea urchin Strongylocentrotus purpuratus. Dev Genes Evol 2002, 212:419-431.
    • (2002) Dev Genes Evol , vol.212 , pp. 419-431
    • Illies, M.R.1    Peeler, M.T.2    Dechtiaruk, A.M.3    Ettensohn, C.A.4
  • 81
    • 4544223705 scopus 로고    scopus 로고
    • Gastrulation in the sea urchin embryo: a model system for analyzing the morphogenesis of a monolayered epithelium.
    • Kominami T, Takata H. Gastrulation in the sea urchin embryo: a model system for analyzing the morphogenesis of a monolayered epithelium. Dev Growth Differ 2004, 46:309-326.
    • (2004) Dev Growth Differ , vol.46 , pp. 309-326
    • Kominami, T.1    Takata, H.2
  • 82
    • 64549089251 scopus 로고    scopus 로고
    • Two ParaHox genes, SpLox and SpCdx, interact to partition the posterior endoderm in the formation of a functional gut.
    • Cole AG, Rizzo F, Martinez P, Fernandez-Serra M, Arnone MI. Two ParaHox genes, SpLox and SpCdx, interact to partition the posterior endoderm in the formation of a functional gut. Development 2009, 136:541-549.
    • (2009) Development , vol.136 , pp. 541-549
    • Cole, A.G.1    Rizzo, F.2    Martinez, P.3    Fernandez-Serra, M.4    Arnone, M.I.5
  • 83
    • 0022120393 scopus 로고
    • Mechanisms of epithelial invagination
    • Ettensohn CA. Mechanisms of epithelial invagination. Quart Rev Biol 1984, 60:289-307.
    • (1984) Quart Rev Biol , vol.60 , pp. 289-307
    • Ettensohn, C.A.1
  • 84
    • 0032382962 scopus 로고    scopus 로고
    • Bottle cells are required for the initiation of primary invagination in the sea urchin embryo.
    • Kimberly EL, Hardin J. Bottle cells are required for the initiation of primary invagination in the sea urchin embryo. Dev Biol 1998, 204:235-250.
    • (1998) Dev Biol , vol.204 , pp. 235-250
    • Kimberly, E.L.1    Hardin, J.2
  • 85
    • 2742577548 scopus 로고    scopus 로고
    • The initial phase of gastrulation in sea urchins is accompanied by the formation of bottle cells.
    • Nakajima Y, Burke RD. The initial phase of gastrulation in sea urchins is accompanied by the formation of bottle cells. Dev Biol 1996, 179:436-446.
    • (1996) Dev Biol , vol.179 , pp. 436-446
    • Nakajima, Y.1    Burke, R.D.2
  • 87
    • 0027476465 scopus 로고
    • A role for regulated secretion of apical extracellular matrix during epithelial invagination in the sea urchin.
    • Lane MC, Koehl MA, Wilt F, Keller R. A role for regulated secretion of apical extracellular matrix during epithelial invagination in the sea urchin. Development 1993, 117:1049-1060.
    • (1993) Development , vol.117 , pp. 1049-1060
    • Lane, M.C.1    Koehl, M.A.2    Wilt, F.3    Keller, R.4
  • 88
    • 0029005577 scopus 로고
    • How do sea urchins invaginate? Using biomechanics to distinguish between mechanisms of primary invagination.
    • Davidson LA, Koehl MA, Keller R, Oster GF. How do sea urchins invaginate? Using biomechanics to distinguish between mechanisms of primary invagination. Development 1995, 121:2005-2018.
    • (1995) Development , vol.121 , pp. 2005-2018
    • Davidson, L.A.1    Koehl, M.A.2    Keller, R.3    Oster, G.F.4
  • 89
    • 0033562772 scopus 로고    scopus 로고
    • Measurements of mechanical properties of the blastula wall reveal which hypothesized mechanisms of primary invagination are physically plausible in the sea urchin Strongylocentrotus purpuratus.
    • Davidson LA, Oster GF, Keller RE, Koehl MA. Measurements of mechanical properties of the blastula wall reveal which hypothesized mechanisms of primary invagination are physically plausible in the sea urchin Strongylocentrotus purpuratus. Dev Biol 1999, 209:221-238.
    • (1999) Dev Biol , vol.209 , pp. 221-238
    • Davidson, L.A.1    Oster, G.F.2    Keller, R.E.3    Koehl, M.A.4
  • 90
    • 1642378927 scopus 로고    scopus 로고
    • Pigment cells trigger the onset of gastrulation in tropical sea urchin Echinometra mathaei.
    • Takata H, Kominami T. Pigment cells trigger the onset of gastrulation in tropical sea urchin Echinometra mathaei. Dev Growth Differ 2004, 46:23-35.
    • (2004) Dev Growth Differ , vol.46 , pp. 23-35
    • Takata, H.1    Kominami, T.2
  • 91
    • 33244498052 scopus 로고    scopus 로고
    • Frizzled5/8 is required in secondary mesenchyme cells to initiate archenteron invagination during sea urchin development.
    • Croce J, Duloquin L, Lhomond G, McClay DR, Gache C. Frizzled5/8 is required in secondary mesenchyme cells to initiate archenteron invagination during sea urchin development. Development 2006, 133:547-557.
    • (2006) Development , vol.133 , pp. 547-557
    • Croce, J.1    Duloquin, L.2    Lhomond, G.3    McClay, D.R.4    Gache, C.5
  • 92
    • 33646444861 scopus 로고    scopus 로고
    • RhoA regulates initiation of invagination, but not convergent extension, during sea urchin gastrulation.
    • Beane WS, Gross JM, McClay DR. RhoA regulates initiation of invagination, but not convergent extension, during sea urchin gastrulation. Dev Biol 2006, 292:213-225.
    • (2006) Dev Biol , vol.292 , pp. 213-225
    • Beane, W.S.1    Gross, J.M.2    McClay, D.R.3
  • 93
    • 0022330107 scopus 로고
    • Gastrulation in the sea urchin embryo is accompanied by the rearrangement of invaginating epithelial cells.
    • Ettensohn CA. Gastrulation in the sea urchin embryo is accompanied by the rearrangement of invaginating epithelial cells. Dev Biol 1985, 112:383-390.
    • (1985) Dev Biol , vol.112 , pp. 383-390
    • Ettensohn, C.A.1
  • 94
    • 0024306268 scopus 로고
    • Local shifts in position and polarized motility drive cell rearrangement during sea urchin gastrulation.
    • Hardin J. Local shifts in position and polarized motility drive cell rearrangement during sea urchin gastrulation. Dev Biol 1989, 136:430-445.
    • (1989) Dev Biol , vol.136 , pp. 430-445
    • Hardin, J.1
  • 95
    • 0022900061 scopus 로고
    • The mechanisms and mechanics of archenteron elongation during sea urchin gastrulation.
    • Hardin JD, Cheng LY. The mechanisms and mechanics of archenteron elongation during sea urchin gastrulation. Dev Biol 1986, 115:490-501.
    • (1986) Dev Biol , vol.115 , pp. 490-501
    • Hardin, J.D.1    Cheng, L.Y.2
  • 96
    • 0025115888 scopus 로고
    • Target recognition by the archenteron during sea urchin gastrulation.
    • Hardin J, McClay DR. Target recognition by the archenteron during sea urchin gastrulation. Dev Biol 1990, 142:86-102.
    • (1990) Dev Biol , vol.142 , pp. 86-102
    • Hardin, J.1    McClay, D.R.2
  • 97
    • 84886269270 scopus 로고
    • Mechanisms of filopodial guidance during sea urchin gastrulation.
    • Hardin J, Morrill J, McClay D. Mechanisms of filopodial guidance during sea urchin gastrulation. J. Cell Biol 1988, 107:814a.
    • (1988) J. Cell Biol , vol.107
    • Hardin, J.1    Morrill, J.2    McClay, D.3
  • 98
    • 0032526162 scopus 로고    scopus 로고
    • Cells are added to the archenteron during and following secondary invagination in the sea urchin Lytechinus variegatus.
    • Martins GG, Summers RG, Morrill JB. Cells are added to the archenteron during and following secondary invagination in the sea urchin Lytechinus variegatus. Dev Biol 1998, 198:330-342.
    • (1998) Dev Biol , vol.198 , pp. 330-342
    • Martins, G.G.1    Summers, R.G.2    Morrill, J.B.3
  • 99
    • 0032261408 scopus 로고    scopus 로고
    • Characterization of involution during sea urchin gastrulation using two-photon excited photorelease and confocal microscopy.
    • Piston DW, Summers RG, Knobel SM, Morrill JB. Characterization of involution during sea urchin gastrulation using two-photon excited photorelease and confocal microscopy. Microsc Microanal 1998, 4:404-414.
    • (1998) Microsc Microanal , vol.4 , pp. 404-414
    • Piston, D.W.1    Summers, R.G.2    Knobel, S.M.3    Morrill, J.B.4
  • 100
    • 67349171520 scopus 로고    scopus 로고
    • A perturbation model of the gene regulatory network for oral and aboral ectoderm specification in the sea urchin embryo.
    • Su YH, Li E, Geiss GK, Longabaugh WJ, Kramer A, Davidson EH. A perturbation model of the gene regulatory network for oral and aboral ectoderm specification in the sea urchin embryo. Dev Biol 2009, 329:410-421.
    • (2009) Dev Biol , vol.329 , pp. 410-421
    • Su, Y.H.1    Li, E.2    Geiss, G.K.3    Longabaugh, W.J.4    Kramer, A.5    Davidson, E.H.6


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.