-
1
-
-
14844299396
-
Quantum computing with realistically noisy devices
-
DOI 10.1038/nature03350
-
E. Knill, Nature (London) NATUAS 0028-0836 10.1038/nature03350 434, 39 (2005). (Pubitemid 40349377)
-
(2005)
Nature
, vol.434
, Issue.7029
, pp. 39-44
-
-
Knill, E.1
-
2
-
-
11344283019
-
Optimal control of coupled spin dynamics: Design of NMR pulse sequences by gradient ascent algorithms
-
DOI 10.1016/j.jmr.2004.11.004, PII S1090780704003696
-
N. Khaneja, T. Reiss, C. Kehlet, T. Schulte-Herbrüggen, and S. J. Glaser, J. Magn. Reson. JMARF3 1090-7807 10.1016/j.jmr.2004.11.004 172, 296 (2005); (Pubitemid 40072534)
-
(2005)
Journal of Magnetic Resonance
, vol.172
, Issue.2
, pp. 296-305
-
-
Khaneja, N.1
Reiss, T.2
Kehlet, C.3
Schulte-Herbruggen, T.4
Glaser, S.J.5
-
3
-
-
79961194952
-
-
0953-4075 10.1088/0953-4075/44/15/154013
-
T. Schulte-Herbrüggen, A. Spörl, N. Khaneja, and S. J. Glaser, J. Phys. B 0953-4075 10.1088/0953-4075/44/15/154013 44, 154013 (2011).
-
(2011)
J. Phys. B
, vol.44
, pp. 154013
-
-
Schulte-Herbrüggen, T.1
Spörl, A.2
Khaneja, N.3
Glaser, S.J.4
-
4
-
-
33144456702
-
High-fidelity one-qubit operations under random telegraph noise
-
DOI 10.1103/PhysRevA.73.022332
-
M. Möttönen, R. deSousa, J. Zhang, and K. B. Whaley, Phys. Rev. A PLRAAN 1050-2947 10.1103/PhysRevA.73.022332 73, 022332 (2006). (Pubitemid 43270287)
-
(2006)
Physical Review A - Atomic, Molecular, and Optical Physics
, vol.73
, Issue.2
, pp. 022332
-
-
Mottonen, M.1
De Sousa, R.2
Zhang, J.3
Whaley, K.B.4
-
5
-
-
75949123169
-
-
PRLTAO 0031-9007 10.1103/PhysRevLett.104.040401
-
J. Clausen, G. Bensky, and G. Kurizki, Phys. Rev. Lett. PRLTAO 0031-9007 10.1103/PhysRevLett.104.040401 104, 040401 (2010).
-
(2010)
Phys. Rev. Lett.
, vol.104
, pp. 040401
-
-
Clausen, J.1
Bensky, G.2
Kurizki, G.3
-
6
-
-
84859012811
-
-
PLRAAN 1050-2947 10.1103/PhysRevA.85.032321
-
B. Hwang and H.-S. Goan, Phys. Rev. A PLRAAN 1050-2947 10.1103/PhysRevA.85.032321 85, 032321 (2012).
-
(2012)
Phys. Rev. A
, vol.85
, pp. 032321
-
-
Hwang, B.1
Goan, H.-S.2
-
7
-
-
61649091133
-
-
PRLTAO 0031-9007 10.1103/PhysRevLett.102.080501
-
K. Khodjasteh and L. Viola, Phys. Rev. Lett. PRLTAO 0031-9007 10.1103/PhysRevLett.102.080501 102, 080501 (2009);
-
(2009)
Phys. Rev. Lett.
, vol.102
, pp. 080501
-
-
Khodjasteh, K.1
Viola, L.2
-
8
-
-
70349232360
-
-
1050-2947 10.1103/PhysRevA.80.032314
-
K. Khodjasteh and L. Viola, Phys. Rev. A 1050-2947 10.1103/PhysRevA.80. 032314 80, 032314 (2009).
-
(2009)
Phys. Rev. A
, vol.80
, pp. 032314
-
-
Khodjasteh, K.1
Viola, L.2
-
9
-
-
4243653638
-
-
PRLTAO 0031-9007 10.1103/PhysRevLett.82.2417
-
L. Viola, E. Knill, and S. Lloyd, Phys. Rev. Lett. PRLTAO 0031-9007 10.1103/PhysRevLett.82.2417 82, 2417 (1999);
-
(1999)
Phys. Rev. Lett.
, vol.82
, pp. 2417
-
-
Viola, L.1
Knill, E.2
Lloyd, S.3
-
10
-
-
0037462960
-
-
0031-9007 10.1103/PhysRevLett.90.037901
-
L. Viola and E. Knill, Phys. Rev. Lett. 0031-9007 10.1103/PhysRevLett.90. 037901 90, 037901 (2003).
-
(2003)
Phys. Rev. Lett.
, vol.90
, pp. 037901
-
-
Viola, L.1
Knill, E.2
-
11
-
-
77749301636
-
-
PRLTAO 0031-9007 10.1103/PhysRevLett.104.090501
-
K. Khodjasteh, D. A. Lidar, and L. Viola, Phys. Rev. Lett. PRLTAO 0031-9007 10.1103/PhysRevLett.104.090501 104, 090501 (2010).
-
(2010)
Phys. Rev. Lett.
, vol.104
, pp. 090501
-
-
Khodjasteh, K.1
Lidar, D.A.2
Viola, L.3
-
12
-
-
84863691358
-
-
PRLTAO 0031-9007 10.1103/PhysRevLett.109.020503
-
D. Hayes, S. M. Clark, S. Debnath, D. Hucul, I. V. Inlek, K. W. Lee, Q. Quraishi, and C. Monroe, Phys. Rev. Lett. PRLTAO 0031-9007 10.1103/PhysRevLett. 109.020503 109, 020503 (2012);
-
(2012)
Phys. Rev. Lett.
, vol.109
, pp. 020503
-
-
Hayes, D.1
Clark, S.M.2
Debnath, S.3
Hucul, D.4
Inlek, I.V.5
Lee, K.W.6
Quraishi, Q.7
Monroe, C.8
-
13
-
-
84455205075
-
-
see also, 1050-2947 10.1103/PhysRevA.84.062323
-
see also D. Hayes, K. Khodjasteh, L. Viola, and M. J. Biercuk, Phys. Rev. A 1050-2947 10.1103/PhysRevA.84.062323 84, 062323 (2011).
-
(2011)
Phys. Rev. A
, vol.84
, pp. 062323
-
-
Hayes, D.1
Khodjasteh, K.2
Viola, L.3
Biercuk, M.J.4
-
14
-
-
0001858212
-
-
PNMRAT 0079-6565 10.1016/0079-6565(86)80005-X
-
M. Levitt, Prog. Nucl. Magn. Reson. Spectrosc. PNMRAT 0079-6565 10.1016/0079-6565(86)80005-X 18, 61 (1986).
-
(1986)
Prog. Nucl. Magn. Reson. Spectrosc.
, vol.18
, pp. 61
-
-
Levitt, M.1
-
16
-
-
0037201597
-
-
PRLTAO 0031-9007 10.1103/PhysRevLett.89.147902
-
J. Levy, Phys. Rev. Lett. PRLTAO 0031-9007 10.1103/PhysRevLett.89.147902 89, 147902 (2002).
-
(2002)
Phys. Rev. Lett.
, vol.89
, pp. 147902
-
-
Levy, J.1
-
17
-
-
25844445343
-
Applied physics: Coherent manipulation of coupled electron spins in semiconductor quantum dots
-
DOI 10.1126/science.1116955
-
J. R. Petta, A. C. Johnson, J. M. Taylor, E. A. Laird, A. Yacoby, M. D. Lukin, C. M. Marcus, M. P. Hanson, and A. C. Gossard, Science SCIEAS 0036-8075 10.1126/science.1116955 309, 2180 (2005); (Pubitemid 41396061)
-
(2005)
Science
, vol.309
, Issue.5744
, pp. 2180-2184
-
-
Petta, J.R.1
Johnson, A.C.2
Taylor, J.M.3
Laird, E.A.4
Yacoby, A.5
Lukin, M.D.6
Marcus, C.M.7
Hanson, M.P.8
Gossard, A.C.9
-
18
-
-
78649308891
-
-
0031-9007 10.1103/PhysRevLett.105.216803
-
H. Bluhm, S. Foletti, D. Mahalu, V. Umansky, and A. Yacoby, Phys. Rev. Lett. 0031-9007 10.1103/PhysRevLett.105.216803 105, 216803 (2010).
-
(2010)
Phys. Rev. Lett.
, vol.105
, pp. 216803
-
-
Bluhm, H.1
Foletti, S.2
Mahalu, D.3
Umansky, V.4
Yacoby, A.5
-
19
-
-
71449092092
-
-
1745-2473 10.1038/nphys1424
-
S. Foletti, H. Bluhm, D. Mahalu, V. Umansky, and A. Yacoby, Nature Phys. 1745-2473 10.1038/nphys1424 5, 903 (2009).
-
(2009)
Nature Phys.
, vol.5
, pp. 903
-
-
Foletti, S.1
Bluhm, H.2
Mahalu, D.3
Umansky, V.4
Yacoby, A.5
-
20
-
-
84859638570
-
-
SCIEAS 0036-8075 10.1126/science.1217692
-
M. D. Shulman, O. E. Dial, S. P. Harvey, H. Bluhm, V. Umansky, and A. Yacoby, Science SCIEAS 0036-8075 10.1126/science.1217692 336, 202 (2012).
-
(2012)
Science
, vol.336
, pp. 202
-
-
Shulman, M.D.1
Dial, O.E.2
Harvey, S.P.3
Bluhm, H.4
Umansky, V.5
Yacoby, A.6
-
21
-
-
84868012207
-
-
arXiv: 1208.2023.
-
O. E. Dial, M. D. Shulman, S. P. Harvey, H. Bluhm, V. Umansky, and A. Yacoby, arXiv: 1208.2023.
-
-
-
Dial, O.E.1
Shulman, M.D.2
Harvey, S.P.3
Bluhm, H.4
Umansky, V.5
Yacoby, A.6
-
22
-
-
84868035180
-
-
Preliminary results were reported by, "Towards optimal constructions of dynamically corrected gates," Invited talk at QEC 2011
-
Preliminary results were reported by L. Viola, "Towards optimal constructions of dynamically corrected gates," Invited talk at QEC 2011, qserver.usc.edu/qec11/slides/Viola-QEC11.pdf
-
-
-
Viola, L.1
-
23
-
-
84861561389
-
-
PLRAAN 1050-2947 10.1103/PhysRevA.85.052313
-
M. D. Grace, J. M. Dominy, W. M. Witzel, and M. S. Carroll, Phys. Rev. A PLRAAN 1050-2947 10.1103/PhysRevA.85.052313 85, 052313 (2012).
-
(2012)
Phys. Rev. A
, vol.85
, pp. 052313
-
-
Grace, M.D.1
Dominy, J.M.2
Witzel, W.M.3
Carroll, M.S.4
-
24
-
-
84866098484
-
-
2041-1723 10.1038/ncomms2003
-
X. Wang, L. S. Bishop, J. P. Kestner, E. Barnes, K. Sun, and S. Das Sarma, Nature Commun. 2041-1723 10.1038/ncomms2003 3, 997 (2012).
-
(2012)
Nature Commun.
, vol.3
, pp. 997
-
-
Wang, X.1
Bishop, L.S.2
Kestner, J.P.3
Barnes, E.4
Sun, K.5
Das Sarma, S.6
-
25
-
-
17944388606
-
-
If universal control and sufficiently fast dynamical decoupling pulses are available, alternative strategies are possible for protecting quantum gates, most simply by embedding the desired gate into the initial and/or final free evolution of a decoupling cycle, following the ideas of, PRLTAO 0031-9007 10.1103/PhysRevLett.83.4888
-
If universal control and sufficiently fast dynamical decoupling pulses are available, alternative strategies are possible for protecting quantum gates, most simply by embedding the desired gate into the initial and/or final free evolution of a decoupling cycle, following the ideas of L. Viola, S. Lloyd, and E. Knill, Phys. Rev. Lett. PRLTAO 0031-9007 10.1103/PhysRevLett.83.4888 83, 4888 (1999).
-
(1999)
Phys. Rev. Lett.
, vol.83
, pp. 4888
-
-
Viola, L.1
Lloyd, S.2
Knill, E.3
-
27
-
-
47049112942
-
-
PLRAAN 1050-2947 10.1103/PhysRevA.78.012308
-
D. A. Lidar, P. Zanardi, and K. Khodjasteh, Phys. Rev. A PLRAAN 1050-2947 10.1103/PhysRevA.78.012308 78, 012308 (2008).
-
(2008)
Phys. Rev. A
, vol.78
, pp. 012308
-
-
Lidar, D.A.1
Zanardi, P.2
Khodjasteh, K.3
-
28
-
-
84868035182
-
-
arXiv: 1112.0333.
-
K. W. Moore, C. Brif, M. D. Grace, A. Donovan, D. L. Hocker, T.-S. Ho, R. Wu, and H. Rabitz, arXiv: 1112.0333.
-
-
-
Moore, K.W.1
Brif, C.2
Grace, M.D.3
Donovan, A.4
Hocker, D.L.5
Ho, T.-S.6
Wu, R.7
Rabitz, H.8
-
29
-
-
0003642134
-
-
j. A so-called Hall basis can be used for expanding the latter in terms of algebraically free operator elements of a given perturbation order. See, e.g., Oxford University Press, New York
-
j. A so-called Hall basis can be used for expanding the latter in terms of algebraically free operator elements of a given perturbation order. See, e.g., C. Reutenauer, Free Lie Algebras (Oxford University Press, New York, 1993).
-
(1993)
Free Lie Algebras
-
-
Reutenauer, C.1
-
30
-
-
34447319137
-
-
PRBMDO 1098-0121 10.1103/PhysRevB.76.035315
-
J. M. Taylor, J. R. Petta, A. C. Johnson, A. Yacoby, C.M. Marcus, and M. D. Lukin, Phys. Rev. B PRBMDO 1098-0121 10.1103/PhysRevB.76.035315 76, 035315 (2007).
-
(2007)
Phys. Rev. B
, vol.76
, pp. 035315
-
-
Taylor, J.M.1
Petta, J.R.2
Johnson, A.C.3
Yacoby, A.4
Marcus, C.M.5
Lukin, M.D.6
-
32
-
-
79961180447
-
-
PRBMDO 1098-0121 10.1103/PhysRevB.83.235316
-
M. J. Biercuk and H. Bluhm, Phys. Rev. B PRBMDO 1098-0121 10.1103/PhysRevB.83.235316 83, 235316 (2011).
-
(2011)
Phys. Rev. B
, vol.83
, pp. 235316
-
-
Biercuk, M.J.1
Bluhm, H.2
-
33
-
-
84868012217
-
-
This corresponds to T2*=150 ns for δB noise and about 11 coherent oscillations within T2* for δJ.
-
This corresponds to T 2 * = 150 ns for δ B noise and about 11 coherent oscillations within T 2 * for δ J.
-
-
-
-
34
-
-
84868012214
-
-
Changing the choice of the drift may change the solutions considerably; for instance, having B=0 removes controllability altogether. Note also that instead of fixing B, we could in principle consider optimizing its value to be fixed across a set of desired gates.
-
Changing the choice of the drift may change the solutions considerably; for instance, having B = 0 removes controllability altogether. Note also that instead of fixing B, we could in principle consider optimizing its value to be fixed across a set of desired gates.
-
-
-
|