-
1
-
-
0034357428
-
-
10.1002/1521-3978(200009)48:9/11<771::AID-PROP771>3.0.CO;2-E
-
D. P. DiVincenzo, Fortschr. Phys. 48, 771 (2000). 10.1002/1521- 3978(200009)48:9/11<771::AID-PROP771>3.0.CO;2-E
-
(2000)
Fortschr. Phys.
, vol.48
, pp. 771
-
-
Divincenzo, D.P.1
-
3
-
-
0040052002
-
-
10.1070/RM1997v052n06ABEH002155
-
A. Y. Kitaev, Russ. Math. Surveys 52, 1191 (1997). 10.1070/ RM1997v052n06ABEH002155
-
(1997)
Russ. Math. Surveys
, vol.52
, pp. 1191
-
-
Kitaev, A.Y.1
-
6
-
-
0141983069
-
-
10.1103/PhysRevA.68.042322
-
A. M. Steane, Phys. Rev. A 68, 042322 (2003). 10.1103/PhysRevA.68.042322
-
(2003)
Phys. Rev. A
, vol.68
, pp. 042322
-
-
Steane, A.M.1
-
7
-
-
14844299396
-
-
10.1038/nature03350
-
E. Knill, Nature (London) 434, 39 (2005). 10.1038/nature03350
-
(2005)
Nature (London)
, vol.434
, pp. 39
-
-
Knill, E.1
-
9
-
-
0034364815
-
-
10.1002/1521-3978(200009)48:9/11<875::AID-PROP875>3.0.CO;2-V
-
D. G. Cory, Fortschr. Phys. 48, 875 (2000). 10.1002/1521-3978(200009)48: 9/11<875::AID-PROP875>3.0.CO;2-V
-
(2000)
Fortschr. Phys.
, vol.48
, pp. 875
-
-
Cory, D.G.1
-
10
-
-
70349252199
-
-
arXiv:0803.1982.
-
C. Ryan, C. Negrevergne, M. Laforest, E. Knill, and R. Laflamme, e-print arXiv:0803.1982.
-
-
-
Ryan, C.1
Negrevergne, C.2
Laforest, M.3
Knill, E.4
Laflamme, R.5
-
11
-
-
0000052107
-
-
10.1103/PhysRevA.58.2733
-
L. Viola and S. Lloyd, Phys. Rev. A 58, 2733 (1998). 10.1103/PhysRevA.58. 2733
-
(1998)
Phys. Rev. A
, vol.58
, pp. 2733
-
-
Viola, L.1
Lloyd, S.2
-
13
-
-
18144389416
-
-
10.1103/PhysRevLett.94.060502
-
L. Viola and E. Knill, Phys. Rev. Lett. 94, 060502 (2005). 10.1103/PhysRevLett.94.060502
-
(2005)
Phys. Rev. Lett.
, vol.94
, pp. 060502
-
-
Viola, L.1
Knill, E.2
-
14
-
-
33749564685
-
-
10.1103/PhysRevLett.97.150501
-
L. F. Santos and L. Viola, Phys. Rev. Lett. 97, 150501 (2006). 10.1103/PhysRevLett.97.150501
-
(2006)
Phys. Rev. Lett.
, vol.97
, pp. 150501
-
-
Santos, L.F.1
Viola, L.2
-
16
-
-
34347336632
-
-
10.1103/PhysRevA.75.062310
-
K. Khodjasteh and D. A. Lidar, Phys. Rev. A 75, 062310 (2007). 10.1103/PhysRevA.75.062310
-
(2007)
Phys. Rev. A
, vol.75
, pp. 062310
-
-
Khodjasteh, K.1
Lidar, D.A.2
-
17
-
-
33947130227
-
-
10.1103/PhysRevLett.98.100504;
-
G. S. Uhrig, Phys. Rev. Lett. 98, 100504 (2007) 10.1103/PhysRevLett.98. 100504
-
(2007)
Phys. Rev. Lett.
, vol.98
, pp. 100504
-
-
Uhrig, G.S.1
-
18
-
-
64149128445
-
-
10.1103/PhysRevLett.102.120502
-
G. S. Uhrig, Phys. Rev. Lett. 102, 120502 (2009). 10.1103/PhysRevLett. 102.120502
-
(2009)
Phys. Rev. Lett.
, vol.102
, pp. 120502
-
-
Uhrig, G.S.1
-
19
-
-
70349258474
-
-
arXiv:quant-ph/0010001.
-
A. J. Berglund, e-print arXiv:quant-ph/0010001.
-
-
-
Berglund, A.J.1
-
21
-
-
33646340649
-
-
10.1038/nphys192
-
J. Morton, A. Tyryshkin, A. Ardavan, S. Benjamin, K. Porfyrakis, S. Lyon, and G. Briggs, Nat. Phys. 2, 40 (2006). 10.1038/nphys192
-
(2006)
Nat. Phys.
, vol.2
, pp. 40
-
-
Morton, J.1
Tyryshkin, A.2
Ardavan, A.3
Benjamin, S.4
Porfyrakis, K.5
Lyon, S.6
Briggs, G.7
-
22
-
-
54549112146
-
-
10.1038/nature07295
-
J. Morton, A. Tyryshkin, R. Brown, S. Shankar, B. Lovett, A. Ardavan, T. Schenkel, E. Haller, J. Ager, and S. A. Lyon, Nature (London) 455, 1085 (2008). 10.1038/nature07295
-
(2008)
Nature (London)
, vol.455
, pp. 1085
-
-
Morton, J.1
Tyryshkin, A.2
Brown, R.3
Shankar, S.4
Lovett, B.5
Ardavan, A.6
Schenkel, T.7
Haller, E.8
Ager, J.9
Lyon, S.A.10
-
23
-
-
68649098319
-
-
10.1103/PhysRevLett.103.040502
-
S. Damodarakurup, M. Lucamarini, G. Di Giuseppe, D. Vitali, and P. Tombesi, Phys. Rev. Lett. 103, 040502 (2009). 10.1103/PhysRevLett.103.040502
-
(2009)
Phys. Rev. Lett.
, vol.103
, pp. 040502
-
-
Damodarakurup, S.1
Lucamarini, M.2
Di Giuseppe, G.3
Vitali, D.4
Tombesi, P.5
-
24
-
-
65549096398
-
-
10.1038/nature07951;
-
M. J. Biercuk, H. Uys, A. P. VanDevender, N. Shiga, W. M. Itano, and J. J. Bollinger, Nature 458, 996 (2009). 10.1038/nature07951
-
(2009)
Nature
, vol.458
, pp. 996
-
-
Biercuk, M.J.1
Uys, H.2
Vandevender, A.P.3
Shiga, N.4
Itano, W.M.5
Bollinger, J.J.6
-
25
-
-
67649442645
-
-
10.1103/PhysRevA.79.062324
-
M. J. Biercuk, H. Uys, A. P. VanDevender, N. Shiga, W. M. Itano, and J. J. Bollinger, Phys. Rev. A 79, 062324 (2009). 10.1103/PhysRevA.79.062324
-
(2009)
Phys. Rev. A
, vol.79
, pp. 062324
-
-
Biercuk, M.J.1
Uys, H.2
Vandevender, A.P.3
Shiga, N.4
Itano, W.M.5
Bollinger, J.J.6
-
26
-
-
61649091133
-
-
10.1103/PhysRevLett.102.080501
-
K. Khodjasteh and L. Viola, Phys. Rev. Lett. 102, 080501 (2009). 10.1103/PhysRevLett.102.080501
-
(2009)
Phys. Rev. Lett.
, vol.102
, pp. 080501
-
-
Khodjasteh, K.1
Viola, L.2
-
30
-
-
11344283019
-
-
10.1016/j.jmr.2004.11.004
-
N. Khaneja, T. Reiss, C. Kehlet, T. Schulte-Herbrüggen, and S. J. Glaser, J. Magn. Reson. 172, 296 (2005). 10.1016/j.jmr.2004.11.004
-
(2005)
J. Magn. Reson.
, vol.172
, pp. 296
-
-
Khaneja, N.1
Reiss, T.2
Kehlet, C.3
Schulte-Herbrüggen, T.4
Glaser, S.J.5
-
31
-
-
34247892210
-
-
10.1103/PhysRevLett.98.180501
-
C. D. Hill, Phys. Rev. Lett. 98, 180501 (2007). 10.1103/PhysRevLett.98. 180501
-
(2007)
Phys. Rev. Lett.
, vol.98
, pp. 180501
-
-
Hill, C.D.1
-
32
-
-
0036572572
-
-
10.1063/1.1465412
-
E. M. Fortunato, M. A. Pravia, N. Boulant, G. Teklemariam, T. F. Havel, and D. G. Cory, J. Chem. Phys. 116, 7599 (2002). 10.1063/1.1465412
-
(2002)
J. Chem. Phys.
, vol.116
, pp. 7599
-
-
Fortunato, E.M.1
Pravia, M.A.2
Boulant, N.3
Teklemariam, G.4
Havel, T.F.5
Cory, D.G.6
-
33
-
-
0242694956
-
-
10.1103/PhysRevA.68.032305
-
N. Boulant, K. Edmonds, J. Yang, M. A. Pravia, and D. G. Cory, Phys. Rev. A 68, 032305 (2003). 10.1103/PhysRevA.68.032305
-
(2003)
Phys. Rev. A
, vol.68
, pp. 032305
-
-
Boulant, N.1
Edmonds, K.2
Yang, J.3
Pravia, M.A.4
Cory, D.G.5
-
34
-
-
25144441354
-
-
10.1016/j.jmr.2005.06.002
-
B. Luy, K. Kozbar, T. E. Skinner, N. Khaneja, and S. J. Glaser, J. Magn. Reson. 176, 179 (2005). 10.1016/j.jmr.2005.06.002
-
(2005)
J. Magn. Reson.
, vol.176
, pp. 179
-
-
Luy, B.1
Kozbar, K.2
Skinner, T.E.3
Khaneja, N.4
Glaser, S.J.5
-
35
-
-
40849095975
-
-
10.1103/PhysRevA.77.032315
-
S. Pasini, T. Fischer, P. Karbach, and G. S. Uhrig, Phys. Rev. A 77, 032315 (2008). 10.1103/PhysRevA.77.032315
-
(2008)
Phys. Rev. A
, vol.77
, pp. 032315
-
-
Pasini, S.1
Fischer, T.2
Karbach, P.3
Uhrig, G.S.4
-
36
-
-
38549101185
-
-
10.1103/PhysRevA.77.012330
-
L. P. Pryadko and G. Quiroz, Phys. Rev. A 77, 012330 (2008). 10.1103/PhysRevA.77.012330
-
(2008)
Phys. Rev. A
, vol.77
, pp. 012330
-
-
Pryadko, L.P.1
Quiroz, G.2
-
38
-
-
0037462960
-
-
10.1103/PhysRevLett.90.037901
-
L. Viola and E. Knill, Phys. Rev. Lett. 90, 037901 (2003). 10.1103/PhysRevLett.90.037901
-
(2003)
Phys. Rev. Lett.
, vol.90
, pp. 037901
-
-
Viola, L.1
Knill, E.2
-
39
-
-
18444391491
-
-
10.1103/PhysRevA.71.012336
-
B. M. Terhal and G. Burkard, Phys. Rev. A 71, 012336 (2005). 10.1103/PhysRevA.71.012336
-
(2005)
Phys. Rev. A
, vol.71
, pp. 012336
-
-
Terhal, B.M.1
Burkard, G.2
-
41
-
-
0043250228
-
-
10.1103/RevModPhys.75.715
-
W. H. Zurek, Rev. Mod. Phys. 75, 715 (2003). 10.1103/RevModPhys.75.715
-
(2003)
Rev. Mod. Phys.
, vol.75
, pp. 715
-
-
Zurek, W.H.1
-
46
-
-
48349097912
-
-
10.1103/PhysRevA.78.012355
-
K. Khodjasteh and D. A. Lidar, Phys. Rev. A 78, 012355 (2008). 10.1103/PhysRevA.78.012355
-
(2008)
Phys. Rev. A
, vol.78
, pp. 012355
-
-
Khodjasteh, K.1
Lidar, D.A.2
-
49
-
-
49349100938
-
-
10.1088/1367-2630/10/8/083009
-
L. F. Santos and L. Viola, New J. Phys. 10, 083009 (2008). 10.1088/1367-2630/10/8/083009
-
(2008)
New J. Phys.
, vol.10
, pp. 083009
-
-
Santos, L.F.1
Viola, L.2
-
52
-
-
0036656249
-
-
10.1103/PhysRevA.66.012307
-
L. Viola, Phys. Rev. A 66, 012307 (2002). 10.1103/PhysRevA.66.012307
-
(2002)
Phys. Rev. A
, vol.66
, pp. 012307
-
-
Viola, L.1
-
53
-
-
42549087705
-
-
10.1103/PhysRevLett.100.160506
-
D. A. Lidar, Phys. Rev. Lett. 100, 160506 (2008). 10.1103/PhysRevLett. 100.160506
-
(2008)
Phys. Rev. Lett.
, vol.100
, pp. 160506
-
-
Lidar, D.A.1
-
54
-
-
70349265206
-
-
Within the radius of convergence, the Magnus expansion is absolutely convergent. This fact can be used to cap the sum of the higher-order terms, see, e.g.,.
-
Within the radius of convergence, the Magnus expansion is absolutely convergent. This fact can be used to cap the sum of the higher-order terms, see, e.g.,.
-
-
-
-
55
-
-
56849121586
-
-
10.1103/PhysRevA.78.052331
-
P. Aliferis and J. Preskill, Phys. Rev. A 78, 052331 (2008). 10.1103/PhysRevA.78.052331
-
(2008)
Phys. Rev. A
, vol.78
, pp. 052331
-
-
Aliferis, P.1
Preskill, J.2
-
56
-
-
70349258377
-
-
The so-called Uhrig DD is an example where the algebraic simplicity of the dephasing model is exploited to obtain an efficient DQEC protocol.
-
The so-called Uhrig DD is an example where the algebraic simplicity of the dephasing model is exploited to obtain an efficient DQEC protocol.
-
-
-
-
57
-
-
10944238840
-
-
10.1080/09500340408231795
-
L. Viola, J. Mod. Opt. 51, 2357 (2004). 10.1080/09500340408231795
-
(2004)
J. Mod. Opt.
, vol.51
, pp. 2357
-
-
Viola, L.1
-
58
-
-
70349258472
-
-
Interestingly, a close-in-spirit implementation has been recently reported for dynamical suppression of collisional decoherence in cold trapped atoms. See arXiv:0905.0286.
-
Interestingly, a close-in-spirit implementation has been recently reported for dynamical suppression of collisional decoherence in cold trapped atoms. See Y. Sagi, I. Almog, and N. Davidson, e-print arXiv:0905.0286.
-
-
-
Sagi, Y.1
Almog, I.2
Davidson, N.3
-
61
-
-
35148873079
-
-
10.1103/RevModPhys.79.1217
-
R. Hanson, L. P. Kouwenhoven, J. R. Petta, S. Tarucha, and L. M. K. Vandersypen, Rev. Mod. Phys. 79, 1217 (2007). 10.1103/RevModPhys.79.1217
-
(2007)
Rev. Mod. Phys.
, vol.79
, pp. 1217
-
-
Hanson, R.1
Kouwenhoven, L.P.2
Petta, J.R.3
Tarucha, S.4
Vandersypen, L.M.K.5
-
62
-
-
33947573103
-
-
10.1088/0953-8984/19/8/083202
-
W. Zhang, N. P. Konstantinidis, K. A. Al-Hassanieh, and V. V. Dobrovitski, J. Phys.: Condens. Matter 19, 083202 (2007). 10.1088/0953-8984/19/ 8/083202
-
(2007)
J. Phys.: Condens. Matter
, vol.19
, pp. 083202
-
-
Zhang, W.1
Konstantinidis, N.P.2
Al-Hassanieh, K.A.3
Dobrovitski, V.V.4
-
63
-
-
70349264571
-
-
Identical DCG constructions would be valid if the Heisenberg interaction is replaced by any two-qubit Hamiltonian commuting with Sα (all) (e.g., the Ising interaction).
-
Identical DCG constructions would be valid if the Heisenberg interaction is replaced by any two-qubit Hamiltonian commuting with Sα (all) (e.g., the Ising interaction).
-
-
-
-
64
-
-
70349264572
-
-
In principle, the unit step function could be replaced by any function u (x) such that u (x) =0 if x [0,1] and ∫01 u (x) dx =1. Even different gates need not be based on the same profile u (x). The essential requirement, however, is that the control profiles are flexible enough to allow the constructions of Q′ and Q1/2 in Sec. 4.
-
In principle, the unit step function could be replaced by any function u (x) such that u (x) =0 if x [0,1] and ∫01 u (x) dx =1. Even different gates need not be based on the same profile u (x). The essential requirement, however, is that the control profiles are flexible enough to allow the constructions of Q′ and Q1/2 in Sec. 4.
-
-
-
-
65
-
-
34347350160
-
-
10.1103/PhysRevB.75.201302
-
W. Zhang, V. V. Dobrovitski, L. F. Santos, L. Viola, and B. N. Harmon, Phys. Rev. B 75, 201302 (R) (2007). 10.1103/PhysRevB.75.201302
-
(2007)
Phys. Rev. B
, vol.75
, pp. 201302
-
-
Zhang, W.1
Dobrovitski, V.V.2
Santos, L.F.3
Viola, L.4
Harmon, B.N.5
-
66
-
-
36949026437
-
-
10.1080/09500340701534857
-
W. Zhang, V. V. Dobrovitski, L. F. Santos, L. Viola, and B. N. Harmon, J. Mod. Opt. 54, 2629 (2007). 10.1080/09500340701534857
-
(2007)
J. Mod. Opt.
, vol.54
, pp. 2629
-
-
Zhang, W.1
Dobrovitski, V.V.2
Santos, L.F.3
Viola, L.4
Harmon, B.N.5
-
67
-
-
41549135633
-
-
10.1103/PhysRevB.77.125336
-
W. Zhang, N. P. Konstantinidis, V. V. Dobrovitski, B. N. Harmon, L. F. Santos, and L. Viola, Phys. Rev. B 77, 125336 (2008). 10.1103/PhysRevB.77.125336
-
(2008)
Phys. Rev. B
, vol.77
, pp. 125336
-
-
Zhang, W.1
Konstantinidis, N.P.2
Dobrovitski, V.V.3
Harmon, B.N.4
Santos, L.F.5
Viola, L.6
-
68
-
-
70349264359
-
-
Realization-to-realization fluctuations in the improvement ratio and corresponding fidelities have been found to be more or less pronounced depending on parameter regime. In particular, the variations are largest for r1 and large A (yielding, e.g., up to a 20% relative variance over four different samples), whereas the effect of Γ seems far less important. These fluctuations do not in any case qualitatively alter the main observed features.
-
Realization-to-realization fluctuations in the improvement ratio and corresponding fidelities have been found to be more or less pronounced depending on parameter regime. In particular, the variations are largest for r1 and large A (yielding, e.g., up to a 20% relative variance over four different samples), whereas the effect of Γ seems far less important. These fluctuations do not in any case qualitatively alter the main observed features.
-
-
-
-
70
-
-
41849111993
-
-
10.1103/PhysRevA.77.042306
-
M. Hsieh and H. Rabitz, Phys. Rev. A 77, 042306 (2008). 10.1103/PhysRevA.77.042306
-
(2008)
Phys. Rev. A
, vol.77
, pp. 042306
-
-
Hsieh, M.1
Rabitz, H.2
-
71
-
-
70349261372
-
-
arXiv:0904.0003.
-
J. E. Levy, A. Ganti, C. A. Phillips, B. R. Hamlet, A. J. Landahl, T. M. Gurrieri, R. D. Carr, and M. S. Carroll, e-print arXiv:0904.0003.
-
-
-
Levy, J.E.1
Ganti, A.2
Phillips, C.A.3
Hamlet, B.R.4
Landahl, A.J.5
Gurrieri, T.M.6
Carr, R.D.7
Carroll, M.S.8
|