메뉴 건너뛰기




Volumn 80, Issue 3, 2009, Pages

Dynamical quantum error correction of unitary operations with bounded controls

Author keywords

[No Author keywords available]

Indexed keywords

BOUNDED CONTROLS; DECOHERENCE; DECOHERENCE SUPPRESSION; ERROR MODEL; EXPLICIT CONSTRUCTIONS; NON-MARKOVIAN; OPEN LOOPS; PARAMETER RANGE; PURE-DEPHASING; QUANTUM ERROR CORRECTIONS; QUANTUM GATES; SYSTEMATIC CONTROL; UNITARY OPERATION;

EID: 70349232360     PISSN: 10502947     EISSN: 10941622     Source Type: Journal    
DOI: 10.1103/PhysRevA.80.032314     Document Type: Article
Times cited : (111)

References (71)
  • 1
    • 0034357428 scopus 로고    scopus 로고
    • 10.1002/1521-3978(200009)48:9/11<771::AID-PROP771>3.0.CO;2-E
    • D. P. DiVincenzo, Fortschr. Phys. 48, 771 (2000). 10.1002/1521- 3978(200009)48:9/11<771::AID-PROP771>3.0.CO;2-E
    • (2000) Fortschr. Phys. , vol.48 , pp. 771
    • Divincenzo, D.P.1
  • 3
    • 0040052002 scopus 로고    scopus 로고
    • 10.1070/RM1997v052n06ABEH002155
    • A. Y. Kitaev, Russ. Math. Surveys 52, 1191 (1997). 10.1070/ RM1997v052n06ABEH002155
    • (1997) Russ. Math. Surveys , vol.52 , pp. 1191
    • Kitaev, A.Y.1
  • 5
    • 0032536044 scopus 로고    scopus 로고
    • 10.1126/science.279.5349.342
    • E. Knill, R. Laflamme, and W. H. Zurek, Science 279, 342 (1998). 10.1126/science.279.5349.342
    • (1998) Science , vol.279 , pp. 342
    • Knill, E.1    Laflamme, R.2    Zurek, W.H.3
  • 6
    • 0141983069 scopus 로고    scopus 로고
    • 10.1103/PhysRevA.68.042322
    • A. M. Steane, Phys. Rev. A 68, 042322 (2003). 10.1103/PhysRevA.68.042322
    • (2003) Phys. Rev. A , vol.68 , pp. 042322
    • Steane, A.M.1
  • 7
    • 14844299396 scopus 로고    scopus 로고
    • 10.1038/nature03350
    • E. Knill, Nature (London) 434, 39 (2005). 10.1038/nature03350
    • (2005) Nature (London) , vol.434 , pp. 39
    • Knill, E.1
  • 9
    • 0034364815 scopus 로고    scopus 로고
    • 10.1002/1521-3978(200009)48:9/11<875::AID-PROP875>3.0.CO;2-V
    • D. G. Cory, Fortschr. Phys. 48, 875 (2000). 10.1002/1521-3978(200009)48: 9/11<875::AID-PROP875>3.0.CO;2-V
    • (2000) Fortschr. Phys. , vol.48 , pp. 875
    • Cory, D.G.1
  • 11
    • 0000052107 scopus 로고    scopus 로고
    • 10.1103/PhysRevA.58.2733
    • L. Viola and S. Lloyd, Phys. Rev. A 58, 2733 (1998). 10.1103/PhysRevA.58. 2733
    • (1998) Phys. Rev. A , vol.58 , pp. 2733
    • Viola, L.1    Lloyd, S.2
  • 13
    • 18144389416 scopus 로고    scopus 로고
    • 10.1103/PhysRevLett.94.060502
    • L. Viola and E. Knill, Phys. Rev. Lett. 94, 060502 (2005). 10.1103/PhysRevLett.94.060502
    • (2005) Phys. Rev. Lett. , vol.94 , pp. 060502
    • Viola, L.1    Knill, E.2
  • 14
    • 33749564685 scopus 로고    scopus 로고
    • 10.1103/PhysRevLett.97.150501
    • L. F. Santos and L. Viola, Phys. Rev. Lett. 97, 150501 (2006). 10.1103/PhysRevLett.97.150501
    • (2006) Phys. Rev. Lett. , vol.97 , pp. 150501
    • Santos, L.F.1    Viola, L.2
  • 15
    • 28844473569 scopus 로고    scopus 로고
    • 10.1103/PhysRevLett.95.180501;
    • K. Khodjasteh and D. A. Lidar, Phys. Rev. Lett. 95, 180501 (2005) 10.1103/PhysRevLett.95.180501
    • (2005) Phys. Rev. Lett. , vol.95 , pp. 180501
    • Khodjasteh, K.1    Lidar, D.A.2
  • 16
    • 34347336632 scopus 로고    scopus 로고
    • 10.1103/PhysRevA.75.062310
    • K. Khodjasteh and D. A. Lidar, Phys. Rev. A 75, 062310 (2007). 10.1103/PhysRevA.75.062310
    • (2007) Phys. Rev. A , vol.75 , pp. 062310
    • Khodjasteh, K.1    Lidar, D.A.2
  • 17
    • 33947130227 scopus 로고    scopus 로고
    • 10.1103/PhysRevLett.98.100504;
    • G. S. Uhrig, Phys. Rev. Lett. 98, 100504 (2007) 10.1103/PhysRevLett.98. 100504
    • (2007) Phys. Rev. Lett. , vol.98 , pp. 100504
    • Uhrig, G.S.1
  • 18
    • 64149128445 scopus 로고    scopus 로고
    • 10.1103/PhysRevLett.102.120502
    • G. S. Uhrig, Phys. Rev. Lett. 102, 120502 (2009). 10.1103/PhysRevLett. 102.120502
    • (2009) Phys. Rev. Lett. , vol.102 , pp. 120502
    • Uhrig, G.S.1
  • 19
    • 70349258474 scopus 로고    scopus 로고
    • arXiv:quant-ph/0010001.
    • A. J. Berglund, e-print arXiv:quant-ph/0010001.
    • Berglund, A.J.1
  • 26
    • 61649091133 scopus 로고    scopus 로고
    • 10.1103/PhysRevLett.102.080501
    • K. Khodjasteh and L. Viola, Phys. Rev. Lett. 102, 080501 (2009). 10.1103/PhysRevLett.102.080501
    • (2009) Phys. Rev. Lett. , vol.102 , pp. 080501
    • Khodjasteh, K.1    Viola, L.2
  • 28
    • 35648934429 scopus 로고    scopus 로고
    • 10.1016/j.jmr.2007.09.001
    • W. G. Alway and J. A. Jones, J. Magn. Reson. 189, 114 (2007). 10.1016/j.jmr.2007.09.001
    • (2007) J. Magn. Reson. , vol.189 , pp. 114
    • Alway, W.G.1    Jones, J.A.2
  • 31
    • 34247892210 scopus 로고    scopus 로고
    • 10.1103/PhysRevLett.98.180501
    • C. D. Hill, Phys. Rev. Lett. 98, 180501 (2007). 10.1103/PhysRevLett.98. 180501
    • (2007) Phys. Rev. Lett. , vol.98 , pp. 180501
    • Hill, C.D.1
  • 36
    • 38549101185 scopus 로고    scopus 로고
    • 10.1103/PhysRevA.77.012330
    • L. P. Pryadko and G. Quiroz, Phys. Rev. A 77, 012330 (2008). 10.1103/PhysRevA.77.012330
    • (2008) Phys. Rev. A , vol.77 , pp. 012330
    • Pryadko, L.P.1    Quiroz, G.2
  • 37
    • 27144510073 scopus 로고    scopus 로고
    • 10.1103/PhysRevLett.95.037202
    • P. Sengupta and L. P. Pryadko, Phys. Rev. Lett. 95, 037202 (2005). 10.1103/PhysRevLett.95.037202
    • (2005) Phys. Rev. Lett. , vol.95 , pp. 037202
    • Sengupta, P.1    Pryadko, L.P.2
  • 38
    • 0037462960 scopus 로고    scopus 로고
    • 10.1103/PhysRevLett.90.037901
    • L. Viola and E. Knill, Phys. Rev. Lett. 90, 037901 (2003). 10.1103/PhysRevLett.90.037901
    • (2003) Phys. Rev. Lett. , vol.90 , pp. 037901
    • Viola, L.1    Knill, E.2
  • 39
    • 18444391491 scopus 로고    scopus 로고
    • 10.1103/PhysRevA.71.012336
    • B. M. Terhal and G. Burkard, Phys. Rev. A 71, 012336 (2005). 10.1103/PhysRevA.71.012336
    • (2005) Phys. Rev. A , vol.71 , pp. 012336
    • Terhal, B.M.1    Burkard, G.2
  • 41
    • 0043250228 scopus 로고    scopus 로고
    • 10.1103/RevModPhys.75.715
    • W. H. Zurek, Rev. Mod. Phys. 75, 715 (2003). 10.1103/RevModPhys.75.715
    • (2003) Rev. Mod. Phys. , vol.75 , pp. 715
    • Zurek, W.H.1
  • 46
    • 48349097912 scopus 로고    scopus 로고
    • 10.1103/PhysRevA.78.012355
    • K. Khodjasteh and D. A. Lidar, Phys. Rev. A 78, 012355 (2008). 10.1103/PhysRevA.78.012355
    • (2008) Phys. Rev. A , vol.78 , pp. 012355
    • Khodjasteh, K.1    Lidar, D.A.2
  • 49
    • 49349100938 scopus 로고    scopus 로고
    • 10.1088/1367-2630/10/8/083009
    • L. F. Santos and L. Viola, New J. Phys. 10, 083009 (2008). 10.1088/1367-2630/10/8/083009
    • (2008) New J. Phys. , vol.10 , pp. 083009
    • Santos, L.F.1    Viola, L.2
  • 52
    • 0036656249 scopus 로고    scopus 로고
    • 10.1103/PhysRevA.66.012307
    • L. Viola, Phys. Rev. A 66, 012307 (2002). 10.1103/PhysRevA.66.012307
    • (2002) Phys. Rev. A , vol.66 , pp. 012307
    • Viola, L.1
  • 53
    • 42549087705 scopus 로고    scopus 로고
    • 10.1103/PhysRevLett.100.160506
    • D. A. Lidar, Phys. Rev. Lett. 100, 160506 (2008). 10.1103/PhysRevLett. 100.160506
    • (2008) Phys. Rev. Lett. , vol.100 , pp. 160506
    • Lidar, D.A.1
  • 54
    • 70349265206 scopus 로고    scopus 로고
    • Within the radius of convergence, the Magnus expansion is absolutely convergent. This fact can be used to cap the sum of the higher-order terms, see, e.g.,.
    • Within the radius of convergence, the Magnus expansion is absolutely convergent. This fact can be used to cap the sum of the higher-order terms, see, e.g.,.
  • 55
    • 56849121586 scopus 로고    scopus 로고
    • 10.1103/PhysRevA.78.052331
    • P. Aliferis and J. Preskill, Phys. Rev. A 78, 052331 (2008). 10.1103/PhysRevA.78.052331
    • (2008) Phys. Rev. A , vol.78 , pp. 052331
    • Aliferis, P.1    Preskill, J.2
  • 56
    • 70349258377 scopus 로고    scopus 로고
    • The so-called Uhrig DD is an example where the algebraic simplicity of the dephasing model is exploited to obtain an efficient DQEC protocol.
    • The so-called Uhrig DD is an example where the algebraic simplicity of the dephasing model is exploited to obtain an efficient DQEC protocol.
  • 57
    • 10944238840 scopus 로고    scopus 로고
    • 10.1080/09500340408231795
    • L. Viola, J. Mod. Opt. 51, 2357 (2004). 10.1080/09500340408231795
    • (2004) J. Mod. Opt. , vol.51 , pp. 2357
    • Viola, L.1
  • 58
    • 70349258472 scopus 로고    scopus 로고
    • Interestingly, a close-in-spirit implementation has been recently reported for dynamical suppression of collisional decoherence in cold trapped atoms. See arXiv:0905.0286.
    • Interestingly, a close-in-spirit implementation has been recently reported for dynamical suppression of collisional decoherence in cold trapped atoms. See Y. Sagi, I. Almog, and N. Davidson, e-print arXiv:0905.0286.
    • Sagi, Y.1    Almog, I.2    Davidson, N.3
  • 60
  • 63
    • 70349264571 scopus 로고    scopus 로고
    • Identical DCG constructions would be valid if the Heisenberg interaction is replaced by any two-qubit Hamiltonian commuting with Sα (all) (e.g., the Ising interaction).
    • Identical DCG constructions would be valid if the Heisenberg interaction is replaced by any two-qubit Hamiltonian commuting with Sα (all) (e.g., the Ising interaction).
  • 64
    • 70349264572 scopus 로고    scopus 로고
    • In principle, the unit step function could be replaced by any function u (x) such that u (x) =0 if x [0,1] and ∫01 u (x) dx =1. Even different gates need not be based on the same profile u (x). The essential requirement, however, is that the control profiles are flexible enough to allow the constructions of Q′ and Q1/2 in Sec. 4.
    • In principle, the unit step function could be replaced by any function u (x) such that u (x) =0 if x [0,1] and ∫01 u (x) dx =1. Even different gates need not be based on the same profile u (x). The essential requirement, however, is that the control profiles are flexible enough to allow the constructions of Q′ and Q1/2 in Sec. 4.
  • 68
    • 70349264359 scopus 로고    scopus 로고
    • Realization-to-realization fluctuations in the improvement ratio and corresponding fidelities have been found to be more or less pronounced depending on parameter regime. In particular, the variations are largest for r1 and large A (yielding, e.g., up to a 20% relative variance over four different samples), whereas the effect of Γ seems far less important. These fluctuations do not in any case qualitatively alter the main observed features.
    • Realization-to-realization fluctuations in the improvement ratio and corresponding fidelities have been found to be more or less pronounced depending on parameter regime. In particular, the variations are largest for r1 and large A (yielding, e.g., up to a 20% relative variance over four different samples), whereas the effect of Γ seems far less important. These fluctuations do not in any case qualitatively alter the main observed features.
  • 70
    • 41849111993 scopus 로고    scopus 로고
    • 10.1103/PhysRevA.77.042306
    • M. Hsieh and H. Rabitz, Phys. Rev. A 77, 042306 (2008). 10.1103/PhysRevA.77.042306
    • (2008) Phys. Rev. A , vol.77 , pp. 042306
    • Hsieh, M.1    Rabitz, H.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.