-
1
-
-
30344438561
-
Bounded-degree graphs have arbitrarily large geometric thickness
-
J. Barát, J. Matoušek, and D. Wood Bounded-degree graphs have arbitrarily large geometric thickness Electronic J. Combinatorics 13 1 2006 R3
-
(2006)
Electronic J. Combinatorics
, vol.13
, Issue.1
, pp. 3
-
-
Barát, J.1
Matoušek, J.2
Wood, D.3
-
3
-
-
84867948399
-
Drawings of planar graphs with few slopes and segments
-
V. Dujmović, D. Eppstein, M. Suderman, and D.R. Wood Drawings of planar graphs with few slopes and segments Computational Geometry: Theory and Applications 38 3 2007 194 212
-
(2007)
Computational Geometry: Theory and Applications
, vol.38
, Issue.3
, pp. 194-212
-
-
Dujmović, V.1
Eppstein, D.2
Suderman, M.3
Wood, D.R.4
-
4
-
-
24144455989
-
Really straight graph drawings
-
J. Pach, Lecture Notes in Computer Science Springer Berlin
-
V. Dujmović, M. Suderman, and D.R. Wood Really straight graph drawings J. Pach, Graph Drawing (GD'04) Lecture Notes in Computer Science vol. 3383 2005 Springer Berlin 122 132
-
(2005)
Graph Drawing (GD'04)
, vol.3383
, pp. 122-132
-
-
Dujmović, V.1
Suderman, M.2
Wood, D.R.3
-
8
-
-
24144447419
-
Separating thickness from geometric thickness
-
J. Pach, Contemporary Mathematics Amer. Math. Soc Providence, RI
-
D. Eppstein Separating thickness from geometric thickness J. Pach, Towards a Theory of Geometric Graphs Contemporary Mathematics vol. 342 2004 Amer. Math. Soc Providence, RI 75 86
-
(2004)
Towards A Theory of Geometric Graphs
, vol.342
, pp. 75-86
-
-
Eppstein, D.1
-
9
-
-
38149088945
-
Drawing cubic graphs with at most five slopes
-
Lecture Notes in Computer Science Springer Berlin
-
B. Keszegh, J. Pach, D. Pálvölgyi, and G. Tóth Drawing cubic graphs with at most five slopes Graph Drawing 2006 Lecture Notes in Computer Science vol. 4372 2007 Springer Berlin 114 125
-
(2007)
Graph Drawing 2006
, vol.4372
, pp. 114-125
-
-
Keszegh, B.1
Pach, J.2
Pálvölgyi, D.3
Tóth, G.4
-
10
-
-
30344461629
-
Bounded-degree graphs can have arbitrarily large slope numbers
-
J. Pach, and D. Pálvölgyi Bounded-degree graphs can have arbitrarily large slope numbers Electronic J. Combinatorics 13 1 2006 N1
-
(2006)
Electronic J. Combinatorics
, vol.13
, Issue.1
, pp. 1
-
-
Pach, J.1
Pálvölgyi, D.2
-
11
-
-
84963035075
-
On diagrams representing maps
-
P. Ungar On diagrams representing maps J. London Math. Soc. 28 1953 336 342
-
(1953)
J. London Math. Soc.
, vol.28
, pp. 336-342
-
-
Ungar, P.1
-
12
-
-
0028336530
-
Drawability of complete graphs using a minimal slope set
-
G.A. Wade, and J.H. Chu Drawability of complete graphs using a minimal slope set The Computer J. 37 1994 139 142
-
(1994)
The Computer J.
, vol.37
, pp. 139-142
-
-
Wade, G.A.1
Chu, J.H.2
|