-
1
-
-
30344438561
-
Bounded-degree graphs have arbitrarily large geometric thickness
-
J. Barát, J. Matoušek, and D. Wood: Bounded-degree graphs have arbitrarily large geometric thickness, Electronic J. Combinatorics 13/1 (2006), R3.
-
(2006)
Electronic J. Combinatorics
, vol.13
, Issue.1
-
-
Barát, J.1
Matoušek, J.2
Wood, D.3
-
2
-
-
0003925394
-
-
Prentice Hall, Upper Saddle River, N.J
-
G. Di Battista, P. Eades, R. Tamassia, and I.G. Tollis: Graph Drawing, Prentice Hall, Upper Saddle River, N.J., 1999.
-
(1999)
Graph Drawing
-
-
Di Battista, G.1
Eades, P.2
Tamassia, R.3
Tollis, I.G.4
-
3
-
-
24144455989
-
Really straight graph drawings
-
Graph Drawing GD'04, J. Pach, ed, Springer-Verlag, Berlin
-
V. Dujmović, M. Suderman, and D.R. Wood: Really straight graph drawings, in: Graph Drawing (GD'04), J. Pach, ed., Lecture Notes in Computer Science 3383, Springer-Verlag, Berlin, 2005, 122-132.
-
(2005)
Lecture Notes in Computer Science
, vol.3383
, pp. 122-132
-
-
Dujmović, V.1
Suderman, M.2
Wood, D.R.3
-
4
-
-
4544290539
-
The geometric thickness of low degree graphs
-
ACM Press
-
C. A. Duncan, D. Eppstein, and S.G. Kobourov: The geometric thickness of low degree graphs, in: Proc. 20th ACM Symp. on Computational Geometry (SoCG'04), ACM Press, 2004, 340-346.
-
(2004)
Proc. 20th ACM Symp. on Computational Geometry (SoCG'04)
, pp. 340-346
-
-
Duncan, C.A.1
Eppstein, D.2
Kobourov, S.G.3
-
5
-
-
38149099026
-
-
M. Engelstein: Drawing graphs with few slopes, Research paper submitted to the Intel Competition for high school students, New York, October 2005.
-
M. Engelstein: Drawing graphs with few slopes, Research paper submitted to the Intel Competition for high school students, New York, October 2005.
-
-
-
-
6
-
-
24144447419
-
Separating thickness from geometric thickness
-
Towards a Theory of Geometric Graphs J. Pach, ed, Amer. Math. Soc, Providence
-
D. Eppstein: Separating thickness from geometric thickness, in: Towards a Theory of Geometric Graphs (J. Pach, ed.), Contemporary Mathematics 342, Amer. Math. Soc, Providence, 2004, 75-86.
-
(2004)
Contemporary Mathematics
, vol.342
, pp. 75-86
-
-
Eppstein, D.1
-
7
-
-
30344461629
-
Bounded-degree graphs can have arbitrarily large slope numbers
-
J. Pach and D. Pálvölgyi: Bounded-degree graphs can have arbitrarily large slope numbers, Electronic J. Combinatorics 13/1 (2006), N1.
-
(2006)
Electronic J. Combinatorics
, vol.13
, Issue.1
-
-
Pach, J.1
Pálvölgyi, D.2
-
8
-
-
84963035075
-
On diagrams representing maps
-
P. Ungar: On diagrams representing maps, J. London Math. Soc. 28 (1953), 336-342.
-
(1953)
J. London Math. Soc
, vol.28
, pp. 336-342
-
-
Ungar, P.1
-
9
-
-
0028336530
-
Drawability of complete graphs using a minimal slope set
-
G. A. Wade and J. H. Chu: Drawability of complete graphs using a minimal slope set, The Computer J. 37 (1994), 139-142.
-
(1994)
The Computer J
, vol.37
, pp. 139-142
-
-
Wade, G.A.1
Chu, J.H.2
|