-
1
-
-
84939751170
-
Prolate spheroidal wave functions, Fourier analysis and uncertainty-I
-
D. Slepian and H. O. Pollak, "Prolate spheroidal wave functions, Fourier analysis and uncertainty-I," Bell Syst. Tech. J., vol. 40, pp. 43-63, 1961.
-
(1961)
Bell Syst. Tech. J.
, vol.40
, pp. 43-63
-
-
Slepian, D.1
Pollak, H.O.2
-
2
-
-
0016552759
-
A new algorithm in spectral analysis and band-limited extrapolation
-
Sep.
-
A. Papoulis, "A new algorithm in spectral analysis and band-limited extrapolation," IEEE Trans. Circuits Syst., vol. CAS-22, no. 9, pp. 735-742, Sep. 1975.
-
(1975)
IEEE Trans. Circuits Syst
, vol.CAS-22
, Issue.9
, pp. 735-742
-
-
Papoulis, A.1
-
3
-
-
84949069862
-
Super resolution through error energy reduction
-
R. W. Gerchberg, "Super resolution through error energy reduction," Opt. Acta, vol. 21, no. 9, pp. 709-720, 1974.
-
(1974)
Opt. Acta
, vol.21
, Issue.9
, pp. 709-720
-
-
Gerchberg, R.W.1
-
4
-
-
0019606764
-
Extrapolation algorithms for discrete signals with application in spectral estimation
-
A. K. Jain and S. Ranganath, "Extrapolation algorithm for discrete signals with application in spectral estimation," IEEE Trans. Acoust., Speech, Signal Process., vol. ASSP-29, no. 4, pp. 830-845, 1981. (Pubitemid 11521932)
-
(1981)
IEEE Transactions on Acoustics, Speech, and Signal Processing
, vol.ASSP-29
, Issue.4
, pp. 830-845
-
-
Jain, A.K.1
Ranganath, S.2
-
5
-
-
40149104667
-
Cases where the linear canonical transform of a signal has compact support or is band-limited
-
DOI 10.1364/OL.33.000228
-
J. J. Healy and J. T. Sheridan, "Cases where the linear canonical transform of a signal has compact support or is band-limited," Opt. Lett., vol. 33, no. 3, pp. 228-230, Feb. 2008. (Pubitemid 351328224)
-
(2008)
Optics Letters
, vol.33
, Issue.3
, pp. 228-230
-
-
Healy, J.J.1
Sheridan, J.T.2
-
6
-
-
79751504478
-
Eigenfunctions and self-imaging phenomena of the two-dimensional nonseparable linear canonical transform
-
J. J. Ding and S. C. Pei, "Eigenfunctions and self-imaging phenomena of the two-dimensional nonseparable linear canonical transform," J. Opt. Soc. Amer. A, vol. 28, no. 2, pp. 82-95, 2011.
-
(2011)
J. Opt. Soc. Amer. A
, vol.28
, Issue.2
, pp. 82-95
-
-
Ding, J.J.1
Pei, S.C.2
-
8
-
-
36849112629
-
Linear canonical transformations and their unitary representations
-
Aug.
-
M. Moshinsky and C. Quesne, "Linear canonical transformations and their unitary representations," J. Math. Phys., vol. 12, no. 8, pp. 1772-1780, Aug. 1971.
-
(1971)
J. Math. Phys.
, vol.12
, Issue.8
, pp. 1772-1780
-
-
Moshinsky, M.1
Quesne, C.2
-
9
-
-
77955902651
-
Equivalence of linear canonical transform domains to fractional Fourier domains and the bicanonical width product:A generalization of the space-bandwidth product
-
F. S. OktemandH.M. Ozaktas, "Equivalence of linear canonical transform domains to fractional Fourier domains and the bicanonical width product:A generalization of the space-bandwidth product," J. Opt. Soc. Amer. A, vol. 27, no. 8, pp. 1885-1895, 2010.
-
(2010)
J. Opt. Soc. Amer. A
, vol.27
, Issue.8
, pp. 1885-1895
-
-
Oktemand, F.S.1
Ozaktas, H.M.2
-
10
-
-
0017936372
-
Approach to band-limited signal extrapolation: The extrapolation matrix
-
M. S. Sabri and W. Steenaart, "An approach to band-limited signal extrapolation: The extrapolation matrix," IEEE Trans. Circuits Syst., vol. CAS-25, no. 2, pp. 74-78, Feb. 1978. (Pubitemid 8588453)
-
(1978)
IEEE Trans Circuits Syst
, vol.CAS-25
, Issue.2
, pp. 74-78
-
-
Sabri, M.S.1
Steenaart, W.2
-
11
-
-
70350501688
-
Approximate signal reconstruction using nonuniform samples in fractional Fourier and linear canonical transform domains
-
K. K. Sharma, "Approximate signal reconstruction using nonuniform samples in fractional Fourier and linear canonical transform domains," IEEE Trans. Signal Process., vol. 57, no. 11, pp. 4573-4578, 2009.
-
(2009)
IEEE Trans. Signal Process.
, vol.57
, Issue.11
, pp. 4573-4578
-
-
Sharma, K.K.1
-
12
-
-
56749170311
-
Extrapolation of signals using the method of alternating projections in fractional Fourier domains
-
K. K. Sharma and S. D. Joshi, "Extrapolation of signals using the method of alternating projections in fractional Fourier domains," Proc. SIViP, vol. 2, pp. 177-182, 2008.
-
(2008)
Proc. SIViP
, vol.2
, pp. 177-182
-
-
Sharma, K.K.1
Joshi, S.D.2
-
13
-
-
77952563157
-
Generalized prolate spheroidal wave functions associated with linear canonical transform
-
Jun.
-
H. Zhao, Q. W. Ran, J. Ma, and L. Y. Tan, "Generalized prolate spheroidal wave functions associated with linear canonical transform," IEEE Trans. Signal Process., vol. 58, no. 6, pp. 3032-3041, Jun. 2010.
-
(2010)
IEEE Trans. Signal Process.
, vol.58
, Issue.6
, pp. 3032-3041
-
-
Zhao, H.1
Ran, Q.W.2
Ma, J.3
Tan, L.Y.4
-
14
-
-
81355135053
-
An extrapolation algorithm for-bandlimited signals
-
Dec.
-
H. Zhao, R. Y. Wang, D. P. Song, and D. P. Wu, "An extrapolation algorithm for-bandlimited signals," IEEE Signal Process. Lett., vol. 18, no. 12, pp. 745-748, Dec. 2011.
-
(2011)
IEEE Signal Process. Lett.
, vol.18
, Issue.12
, pp. 745-748
-
-
Zhao, H.1
Wang, R.Y.2
Song, D.P.3
Wu, D.P.4
-
15
-
-
84863170899
-
Extrapolation of bandlimited signals in linear canonical transform domain
-
J. Shi, X. J. Sha, Q. Y. Zhang, and N. T. Zhang, "Extrapolation of bandlimited signals in linear canonical transform domain," IEEE Trans. Signal Process., vol. 60, no. 3, pp. 1502-1508, 2012.
-
(2012)
IEEE Trans. Signal Process.
, vol.60
, Issue.3
, pp. 1502-1508
-
-
Shi, J.1
Sha, X.J.2
Zhang, Q.Y.3
Zhang, N.T.4
-
16
-
-
3342895761
-
A method with error estimates for bandlimited signal extrapolation from inaccurate data
-
X. G. Xia and M. Z. Nashed, "A method with error estimates for bandlimited signal extrapolation from inaccurate data," Inv. Probl., vol. 13, pp. 1641-1661, 1997.
-
(1997)
Inv. Probl.
, vol.13
, pp. 1641-1661
-
-
Xia, X.G.1
Nashed, M.Z.2
-
17
-
-
47949105809
-
Sampling rate conversion of linear canonical transform
-
J. Zhao, R. Tao, and Y. Wang, "Sampling rate conversion of linear canonical transform," Signal Process., vol. 88, pp. 2825-2832, 2008.
-
(2008)
Signal Process.
, vol.88
, pp. 2825-2832
-
-
Zhao, J.1
Tao, R.2
Wang, Y.3
-
18
-
-
44949106262
-
Digital computation of linear canonical transforms
-
DOI 10.1109/TSP.2007.912890
-
A. Koc, H. M. Ozaktas, C. Candan, and M. A. Kutay, "Digital computation of linear canonical transforms," IEEE Trans. Signal Process., vol. 56, no. 6, pp. 2383-2394, Jun. 2008. (Pubitemid 351801719)
-
(2008)
IEEE Transactions on Signal Processing
, vol.56
, Issue.6
, pp. 2383-2394
-
-
Koc, A.1
Ozaktas, H.M.2
Candan, C.3
Kutay, M.A.4
-
19
-
-
19944406134
-
Fast numerical algorithm for the linear canonical transform
-
DOI 10.1364/JOSAA.22.000928
-
B. M. Hennelly and J. T. Sheridan, "Fast numerical algorithm for the linear canonical transform," J. Opt. Soc. Amer. A, vol. 22, no. 5, pp. 928-937, May 2005. (Pubitemid 40748643)
-
(2005)
Journal of the Optical Society of America A: Optics and Image Science, and Vision
, vol.22
, Issue.5
, pp. 928-937
-
-
Hennelly, B.M.1
Sheridan, J.T.2
-
20
-
-
85008055130
-
Exact relation between continuous and discrete linear canonical transforms
-
Aug.
-
F. S. Oktem and H. M. Ozaktas, "Exact relation between continuous and discrete linear canonical transforms," IEEE Signal Process. Lett., vol. 16, no. 8, pp. 727-730, Aug. 2009.
-
(2009)
IEEE Signal Process. Lett.
, vol.16
, Issue.8
, pp. 727-730
-
-
Oktem, F.S.1
Ozaktas, H.M.2
-
21
-
-
57749196950
-
Sampling and discretization of the linear canonical transform
-
Apr.
-
J. J. Healy and J. T. Sheridan, "Sampling and discretization of the linear canonical transform," Signal Process., vol. 89, no. 4, pp. 641-648,Apr. 2009.
-
(2009)
Signal Process.
, vol.89
, Issue.4
, pp. 641-648
-
-
Healy, J.J.1
Sheridan, J.T.2
-
22
-
-
64249164703
-
On bandlimited signals associated with linear canonical transform
-
May
-
H. Zhao,Q.W. Ran, J.Ma, and L. Y. Tan, "On bandlimited signals associated with linear canonical transform," IEEE Signal Process. Lett., vol. 16, no. 5, pp. 343-345, May 2009.
-
(2009)
IEEE Signal Process. Lett.
, vol.16
, Issue.5
, pp. 343-345
-
-
Zhao, H.1
Ran, Q.W.2
Ma, J.3
Tan, L.Y.4
-
24
-
-
84904745079
-
Maximally concentrated sequences in both time and linear canonical transform domains
-
H. Zhao, R. Y. Wang, D. P. Song, and D. P. Wu, "Maximally concentrated sequences in both time and linear canonical transform domains," Signal, Image Video Process 10.1007/s11760-012-0309-1.
-
Signal, Image Video Process 10.1007/s11760-012-0309-1
-
-
Zhao, H.1
Wang, R.Y.2
Song, D.P.3
Wu, D.P.4
|