메뉴 건너뛰기




Volumn 4, Issue 6, 2012, Pages 554-560

Science-based parameterizations for dynamical spatiotemporal models

Author keywords

Bayesian hierarchical models; Computer models; Dynamic spatiotemporal models; Emulators; Mechanistically motivated statistical models

Indexed keywords

BAYESIAN HIERARCHICAL MODEL; COMPUTER MODELS; EMULATORS; SPATIO-TEMPORAL MODELS; STATISTICAL MODELS;

EID: 84867799104     PISSN: 19395108     EISSN: 19390068     Source Type: Journal    
DOI: 10.1002/wics.1227     Document Type: Article
Times cited : (8)

References (31)
  • 3
    • 0442325070 scopus 로고    scopus 로고
    • Classes of nonseparable, spatiotemporal stationary covariance functions
    • doi:10.1080/ 01621459.1999.10473885.
    • Cressie NAC, Huang NC. Classes of nonseparable, spatiotemporal stationary covariance functions. J Am Stat Assoc 1999, 94:1330-1340. doi:10.1080/ 01621459.1999.10473885.
    • (1999) J Am Stat Assoc , vol.94 , pp. 1330-1340
    • Cressie, N.A.C.1    Huang, N.C.2
  • 4
    • 0035998830 scopus 로고    scopus 로고
    • Nonseparable, stationary covariance functions for space-time data
    • doi:10.1198/016214502760047113.
    • Gneiting T. Nonseparable, stationary covariance functions for space-time data. J Am Stat Assoc 2002, 97:590-600. doi:10.1198/016214502760047113.
    • (2002) J Am Stat Assoc , vol.97 , pp. 590-600
    • Gneiting, T.1
  • 5
    • 14944355575 scopus 로고    scopus 로고
    • Space-time covariance functions
    • doi:10.1198/ 016214504000000854.
    • Stein M. Space-time covariance functions. J Am Stat Assoc 2005, 100:310-321. doi:10.1198/ 016214504000000854.
    • (2005) J Am Stat Assoc , vol.100 , pp. 310-321
    • Stein, M.1
  • 6
    • 47549089482 scopus 로고    scopus 로고
    • A class of nonseparable and nonstationary spatio temporal covariance functions
    • doi:10.1002/env.891.
    • Fuentes M, Chen L, Davis JM. A class of nonseparable and nonstationary spatio temporal covariance functions. Environmetrics 2008, 19:487-507. doi:10.1002/env.891.
    • (2008) Environmetrics , vol.19 , pp. 487-507
    • Fuentes, M.1    Chen, L.2    Davis, J.M.3
  • 8
    • 78449244115 scopus 로고    scopus 로고
    • A general science-based framework for dynamical spatio-temporal models
    • doi:10.1007/s11749-010-0209-z.
    • Wikle CK, Hooten MB. A general science-based framework for dynamical spatio-temporal models. Test 2010, 19:417-451. doi:10.1007/s11749-010-0209-z.
    • (2010) Test , vol.19 , pp. 417-451
    • Wikle, C.K.1    Hooten, M.B.2
  • 9
    • 0000414912 scopus 로고    scopus 로고
    • A dimension-reduced approach to space-time Kalman filtering
    • doi:10.1093/biomet/86.4.815.
    • Wikle CK, Cressie NAC. A dimension-reduced approach to space-time Kalman filtering. Biometrika 1999, 86:815-829. doi:10.1093/biomet/86.4.815.
    • (1999) Biometrika , vol.86 , pp. 815-829
    • Wikle, C.K.1    Cressie, N.A.C.2
  • 11
    • 84950453304 scopus 로고
    • Sampling-based approaches to calculating marginal densities
    • doi:10.2307/2289776.
    • Gelfand AE, Smith AFM. Sampling-based approaches to calculating marginal densities. J Am Stat Assoc 1990, 85:398-409. doi:10.2307/2289776.
    • (1990) J Am Stat Assoc , vol.85 , pp. 398-409
    • Gelfand, A.E.1    Smith, A.F.M.2
  • 12
    • 84937730674 scopus 로고
    • Explaining the Gibbs sampler
    • doi:10.2307/2685208.
    • Casella G, George EI. Explaining the Gibbs sampler. Am Stat 1992, 46:167-174. doi:10.2307/2685208.
    • (1992) Am Stat , vol.46 , pp. 167-174
    • Casella, G.1    George, E.I.2
  • 13
    • 32344446687 scopus 로고
    • Understanding the Metropolis-Hastings algorithm
    • doi:10.2307/2684568.
    • Chib S, Greenberg E. Understanding the Metropolis-Hastings algorithm. Am Stat 1995, 49:327-335. doi:10.2307/2684568.
    • (1995) Am Stat , vol.49 , pp. 327-335
    • Chib, S.1    Greenberg, E.2
  • 15
    • 33750082644 scopus 로고    scopus 로고
    • DRAM: efficient adaptive MCMC
    • doi:10.1007/s11222-006-9438-0.
    • Haario H, Laine M, Mira A, Saksman E. DRAM: efficient adaptive MCMC. Stat Comput 2006, 16:339-354. doi:10.1007/s11222-006-9438-0.
    • (2006) Stat Comput , vol.16 , pp. 339-354
    • Haario, H.1    Laine, M.2    Mira, A.3    Saksman, E.4
  • 16
    • 70349290724 scopus 로고    scopus 로고
    • Examples of adaptive MCMC
    • doi:10.1198/jcgs.2009.06134.
    • Roberts GO, Rosenthal JS. Examples of adaptive MCMC. J Comput Graph Stat 2009, 18:349-367. doi:10.1198/jcgs.2009.06134.
    • (2009) J Comput Graph Stat , vol.18 , pp. 349-367
    • Roberts, G.O.1    Rosenthal, J.S.2
  • 17
    • 77952563168 scopus 로고    scopus 로고
    • Explaining variational approximations
    • doi:10.1198/tast.2010.09058.
    • Ormerod JT, Wand MP. Explaining variational approximations. Am Stat 2010, 64:140-153. doi:10.1198/tast.2010.09058.
    • (2010) Am Stat , vol.64 , pp. 140-153
    • Ormerod, J.T.1    Wand, M.P.2
  • 18
    • 62849120031 scopus 로고    scopus 로고
    • Approximate Bayesian inference for latent Gaussian models by using integrated nested laplace approximations
    • doi:10.1111/j.1467-9868.2008.00700.x.
    • Rue H, Martino S, Chopin N. Approximate Bayesian inference for latent Gaussian models by using integrated nested laplace approximations. J Roy Stat Soc B Met 2009, 71:319-392. doi:10.1111/j.1467-9868.2008.00700.x.
    • (2009) J Roy Stat Soc B Met , vol.71 , pp. 319-392
    • Rue, H.1    Martino, S.2    Chopin, N.3
  • 19
    • 73549122582 scopus 로고    scopus 로고
    • Non-linear regression models for approximate Bayesian computation
    • doi:10.1007/s11222-009-9116-0.
    • Blum M, Francois O. Non-linear regression models for approximate Bayesian computation. Stat Comput 2010, 20:63-73. doi:10.1007/s11222-009-9116-0.
    • (2010) Stat Comput , vol.20 , pp. 63-73
    • Blum, M.1    Francois, O.2
  • 21
    • 1542469523 scopus 로고    scopus 로고
    • Spatiotemporal hierarchical Bayesian modeling of tropical ocean surface winds
    • doi:10.1198/016214501753168109.
    • Wikle CK, Milliff RF, Nychka D, Berliner LM. Spatiotemporal hierarchical Bayesian modeling of tropical ocean surface winds. J Am Stat Assoc 2001, 96:382-397. doi:10.1198/016214501753168109.
    • (2001) J Am Stat Assoc , vol.96 , pp. 382-397
    • Wikle, C.K.1    Milliff, R.F.2    Nychka, D.3    Berliner, L.M.4
  • 22
    • 1642293330 scopus 로고    scopus 로고
    • Physical-statistical modeling in geophysics
    • doi:10.1029/ 2002JD002865.
    • Berliner LM. Physical-statistical modeling in geophysics. J Geophys Res 2003. 108:15. doi:10.1029/ 2002JD002865.
    • (2003) J Geophys Res , vol.108 , pp. 15
    • Berliner, L.M.1
  • 23
    • 0041985115 scopus 로고    scopus 로고
    • Hierarchical Bayesian models for predicting the spread of ecological processes
    • doi:10.1890/0012-9658 (2003)084[1382:HBMFPT]2.0.CO;2.
    • Wikle CK. Hierarchical Bayesian models for predicting the spread of ecological processes. Ecology 2003, 84:1382-1394. doi:10.1890/0012-9658 (2003)084[1382:HBMFPT]2.0.CO;2.
    • (2003) Ecology , vol.84 , pp. 1382-1394
    • Wikle, C.K.1
  • 24
    • 77952577827 scopus 로고    scopus 로고
    • Statistical agent-based models for discrete spatio-temporal systems
    • doi:10.1198/jasa.2009.tm09036.
    • Hooten MB, Wikle CK. Statistical agent-based models for discrete spatio-temporal systems. J Am Stat Assoc 2010, 105:236-248. doi:10.1198/jasa.2009.tm09036.
    • (2010) J Am Stat Assoc , vol.105 , pp. 236-248
    • Hooten, M.B.1    Wikle, C.K.2
  • 25
    • 0442293846 scopus 로고    scopus 로고
    • Inference for deterministic simulation models: the Bayesian melding approach
    • doi:10.2307/2669764.
    • Poole D, Raftery AE. Inference for deterministic simulation models: the Bayesian melding approach. J Am Stat Assoc 2000, 95:1244-1255. doi:10.2307/2669764.
    • (2000) J Am Stat Assoc , vol.95 , pp. 1244-1255
    • Poole, D.1    Raftery, A.E.2
  • 26
    • 15044352085 scopus 로고    scopus 로고
    • Model evaluation and spatial interpolation by Bayesian combination of observations with outputs from numerical models
    • doi:10.1111/j.0006-341X.2005.030821.x.
    • Fuentes M, Raftery AE. Model evaluation and spatial interpolation by Bayesian combination of observations with outputs from numerical models. Biometrics 2005, 66:36-45. doi:10.1111/j.0006-341X.2005.030821.x.
    • (2005) Biometrics , vol.66 , pp. 36-45
    • Fuentes, M.1    Raftery, A.E.2
  • 27
    • 83555177261 scopus 로고    scopus 로고
    • Improving crop model inference through Bayesian melding with spatially-varying parameters
    • doi:10.1007/s13253-011-0070-x.
    • Finley AO, Banerjee S, Basso B. Improving crop model inference through Bayesian melding with spatially-varying parameters. J Agric Biol Environ Stat 2011, 16:453-474. doi:10.1007/s13253-011-0070-x.
    • (2011) J Agric Biol Environ Stat , vol.16 , pp. 453-474
    • Finley, A.O.1    Banerjee, S.2    Basso, B.3
  • 28
    • 84972517827 scopus 로고
    • Design and analysis of experiments
    • doi:10.1214/ss/1177012413.
    • Sacks J, Welch WJ, Mitchell TJ, Wynn HP. Design and analysis of experiments. Stat Sci 1989, 4:409-423. doi:10.1214/ss/1177012413.
    • (1989) Stat Sci , vol.4 , pp. 409-423
    • Sacks, J.1    Welch, W.J.2    Mitchell, T.J.3    Wynn, H.P.4
  • 29
    • 84950437532 scopus 로고
    • Bayesian prediction of deterministic functions, with applications to the design and analysis of computer experiments
    • doi:10.2307/2290511.
    • Currin C, Mitchell T, Morris M, Ylivisaker D. Bayesian prediction of deterministic functions, with applications to the design and analysis of computer experiments. J Am Stat Assoc 1991, 86:953-963. doi:10.2307/2290511.
    • (1991) J Am Stat Assoc , vol.86 , pp. 953-963
    • Currin, C.1    Mitchell, T.2    Morris, M.3    Ylivisaker, D.4
  • 30
    • 0007312235 scopus 로고    scopus 로고
    • Predicting the output from a complex computer code when fast approximations are available
    • doi:10.1093/biomet/87.1.1.
    • Kennedy MC, O'Hagan A. Predicting the output from a complex computer code when fast approximations are available. Biometrika 2000, 87:1-13. doi:10.1093/biomet/87.1.1.
    • (2000) Biometrika , vol.87 , pp. 1-13
    • Kennedy, M.C.1    O'Hagan, A.2
  • 31
    • 83555177267 scopus 로고    scopus 로고
    • Assessing first-order emulator inference for physical parameters in nonlinear mechanistic models
    • doi:10.1007/s13253-011-0073-7.
    • Hooten MB, Leeds WB, Fiechter J, Wikle CK. Assessing first-order emulator inference for physical parameters in nonlinear mechanistic models. J Agric Biol Environ Stat 2011, 16:475-494. doi:10.1007/s13253-011-0073-7.
    • (2011) J Agric Biol Environ Stat , vol.16 , pp. 475-494
    • Hooten, M.B.1    Leeds, W.B.2    Fiechter, J.3    Wikle, C.K.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.