-
3
-
-
0442325070
-
Classes of nonseparable, spatiotemporal stationary covariance functions
-
doi:10.1080/ 01621459.1999.10473885.
-
Cressie NAC, Huang NC. Classes of nonseparable, spatiotemporal stationary covariance functions. J Am Stat Assoc 1999, 94:1330-1340. doi:10.1080/ 01621459.1999.10473885.
-
(1999)
J Am Stat Assoc
, vol.94
, pp. 1330-1340
-
-
Cressie, N.A.C.1
Huang, N.C.2
-
4
-
-
0035998830
-
Nonseparable, stationary covariance functions for space-time data
-
doi:10.1198/016214502760047113.
-
Gneiting T. Nonseparable, stationary covariance functions for space-time data. J Am Stat Assoc 2002, 97:590-600. doi:10.1198/016214502760047113.
-
(2002)
J Am Stat Assoc
, vol.97
, pp. 590-600
-
-
Gneiting, T.1
-
5
-
-
14944355575
-
Space-time covariance functions
-
doi:10.1198/ 016214504000000854.
-
Stein M. Space-time covariance functions. J Am Stat Assoc 2005, 100:310-321. doi:10.1198/ 016214504000000854.
-
(2005)
J Am Stat Assoc
, vol.100
, pp. 310-321
-
-
Stein, M.1
-
6
-
-
47549089482
-
A class of nonseparable and nonstationary spatio temporal covariance functions
-
doi:10.1002/env.891.
-
Fuentes M, Chen L, Davis JM. A class of nonseparable and nonstationary spatio temporal covariance functions. Environmetrics 2008, 19:487-507. doi:10.1002/env.891.
-
(2008)
Environmetrics
, vol.19
, pp. 487-507
-
-
Fuentes, M.1
Chen, L.2
Davis, J.M.3
-
8
-
-
78449244115
-
A general science-based framework for dynamical spatio-temporal models
-
doi:10.1007/s11749-010-0209-z.
-
Wikle CK, Hooten MB. A general science-based framework for dynamical spatio-temporal models. Test 2010, 19:417-451. doi:10.1007/s11749-010-0209-z.
-
(2010)
Test
, vol.19
, pp. 417-451
-
-
Wikle, C.K.1
Hooten, M.B.2
-
9
-
-
0000414912
-
A dimension-reduced approach to space-time Kalman filtering
-
doi:10.1093/biomet/86.4.815.
-
Wikle CK, Cressie NAC. A dimension-reduced approach to space-time Kalman filtering. Biometrika 1999, 86:815-829. doi:10.1093/biomet/86.4.815.
-
(1999)
Biometrika
, vol.86
, pp. 815-829
-
-
Wikle, C.K.1
Cressie, N.A.C.2
-
11
-
-
84950453304
-
Sampling-based approaches to calculating marginal densities
-
doi:10.2307/2289776.
-
Gelfand AE, Smith AFM. Sampling-based approaches to calculating marginal densities. J Am Stat Assoc 1990, 85:398-409. doi:10.2307/2289776.
-
(1990)
J Am Stat Assoc
, vol.85
, pp. 398-409
-
-
Gelfand, A.E.1
Smith, A.F.M.2
-
12
-
-
84937730674
-
Explaining the Gibbs sampler
-
doi:10.2307/2685208.
-
Casella G, George EI. Explaining the Gibbs sampler. Am Stat 1992, 46:167-174. doi:10.2307/2685208.
-
(1992)
Am Stat
, vol.46
, pp. 167-174
-
-
Casella, G.1
George, E.I.2
-
13
-
-
32344446687
-
Understanding the Metropolis-Hastings algorithm
-
doi:10.2307/2684568.
-
Chib S, Greenberg E. Understanding the Metropolis-Hastings algorithm. Am Stat 1995, 49:327-335. doi:10.2307/2684568.
-
(1995)
Am Stat
, vol.49
, pp. 327-335
-
-
Chib, S.1
Greenberg, E.2
-
15
-
-
33750082644
-
DRAM: efficient adaptive MCMC
-
doi:10.1007/s11222-006-9438-0.
-
Haario H, Laine M, Mira A, Saksman E. DRAM: efficient adaptive MCMC. Stat Comput 2006, 16:339-354. doi:10.1007/s11222-006-9438-0.
-
(2006)
Stat Comput
, vol.16
, pp. 339-354
-
-
Haario, H.1
Laine, M.2
Mira, A.3
Saksman, E.4
-
16
-
-
70349290724
-
Examples of adaptive MCMC
-
doi:10.1198/jcgs.2009.06134.
-
Roberts GO, Rosenthal JS. Examples of adaptive MCMC. J Comput Graph Stat 2009, 18:349-367. doi:10.1198/jcgs.2009.06134.
-
(2009)
J Comput Graph Stat
, vol.18
, pp. 349-367
-
-
Roberts, G.O.1
Rosenthal, J.S.2
-
17
-
-
77952563168
-
Explaining variational approximations
-
doi:10.1198/tast.2010.09058.
-
Ormerod JT, Wand MP. Explaining variational approximations. Am Stat 2010, 64:140-153. doi:10.1198/tast.2010.09058.
-
(2010)
Am Stat
, vol.64
, pp. 140-153
-
-
Ormerod, J.T.1
Wand, M.P.2
-
18
-
-
62849120031
-
Approximate Bayesian inference for latent Gaussian models by using integrated nested laplace approximations
-
doi:10.1111/j.1467-9868.2008.00700.x.
-
Rue H, Martino S, Chopin N. Approximate Bayesian inference for latent Gaussian models by using integrated nested laplace approximations. J Roy Stat Soc B Met 2009, 71:319-392. doi:10.1111/j.1467-9868.2008.00700.x.
-
(2009)
J Roy Stat Soc B Met
, vol.71
, pp. 319-392
-
-
Rue, H.1
Martino, S.2
Chopin, N.3
-
19
-
-
73549122582
-
Non-linear regression models for approximate Bayesian computation
-
doi:10.1007/s11222-009-9116-0.
-
Blum M, Francois O. Non-linear regression models for approximate Bayesian computation. Stat Comput 2010, 20:63-73. doi:10.1007/s11222-009-9116-0.
-
(2010)
Stat Comput
, vol.20
, pp. 63-73
-
-
Blum, M.1
Francois, O.2
-
20
-
-
0006198703
-
-
A hierarchical spatial model for constructing wind fields from scatterometer data in the Labrador Sea. In, eds. New York: Springer;
-
Royle JA, Berliner LM, Wikle CK, Milliff RF. A hierarchical spatial model for constructing wind fields from scatterometer data in the Labrador Sea. In: Gatsonis C, Kass RE, Carlin B, Carriquiry A, Gelman A, Verdinelli I, West M, eds. Case Studies in Bayesian Statistics IV. New York: Springer; 1998, 367-382.
-
(1998)
Case Studies in Bayesian Statistics IV
, pp. 367-382
-
-
Royle, J.A.1
Berliner, L.M.2
Wikle, C.K.3
Milliff, R.F.4
Gatsonis, C.5
Kass, R.E.6
Carlin, B.7
Carriquiry, A.8
Gelman, A.9
Verdinelli, I.10
West, M.11
-
21
-
-
1542469523
-
Spatiotemporal hierarchical Bayesian modeling of tropical ocean surface winds
-
doi:10.1198/016214501753168109.
-
Wikle CK, Milliff RF, Nychka D, Berliner LM. Spatiotemporal hierarchical Bayesian modeling of tropical ocean surface winds. J Am Stat Assoc 2001, 96:382-397. doi:10.1198/016214501753168109.
-
(2001)
J Am Stat Assoc
, vol.96
, pp. 382-397
-
-
Wikle, C.K.1
Milliff, R.F.2
Nychka, D.3
Berliner, L.M.4
-
22
-
-
1642293330
-
Physical-statistical modeling in geophysics
-
doi:10.1029/ 2002JD002865.
-
Berliner LM. Physical-statistical modeling in geophysics. J Geophys Res 2003. 108:15. doi:10.1029/ 2002JD002865.
-
(2003)
J Geophys Res
, vol.108
, pp. 15
-
-
Berliner, L.M.1
-
23
-
-
0041985115
-
Hierarchical Bayesian models for predicting the spread of ecological processes
-
doi:10.1890/0012-9658 (2003)084[1382:HBMFPT]2.0.CO;2.
-
Wikle CK. Hierarchical Bayesian models for predicting the spread of ecological processes. Ecology 2003, 84:1382-1394. doi:10.1890/0012-9658 (2003)084[1382:HBMFPT]2.0.CO;2.
-
(2003)
Ecology
, vol.84
, pp. 1382-1394
-
-
Wikle, C.K.1
-
24
-
-
77952577827
-
Statistical agent-based models for discrete spatio-temporal systems
-
doi:10.1198/jasa.2009.tm09036.
-
Hooten MB, Wikle CK. Statistical agent-based models for discrete spatio-temporal systems. J Am Stat Assoc 2010, 105:236-248. doi:10.1198/jasa.2009.tm09036.
-
(2010)
J Am Stat Assoc
, vol.105
, pp. 236-248
-
-
Hooten, M.B.1
Wikle, C.K.2
-
25
-
-
0442293846
-
Inference for deterministic simulation models: the Bayesian melding approach
-
doi:10.2307/2669764.
-
Poole D, Raftery AE. Inference for deterministic simulation models: the Bayesian melding approach. J Am Stat Assoc 2000, 95:1244-1255. doi:10.2307/2669764.
-
(2000)
J Am Stat Assoc
, vol.95
, pp. 1244-1255
-
-
Poole, D.1
Raftery, A.E.2
-
26
-
-
15044352085
-
Model evaluation and spatial interpolation by Bayesian combination of observations with outputs from numerical models
-
doi:10.1111/j.0006-341X.2005.030821.x.
-
Fuentes M, Raftery AE. Model evaluation and spatial interpolation by Bayesian combination of observations with outputs from numerical models. Biometrics 2005, 66:36-45. doi:10.1111/j.0006-341X.2005.030821.x.
-
(2005)
Biometrics
, vol.66
, pp. 36-45
-
-
Fuentes, M.1
Raftery, A.E.2
-
27
-
-
83555177261
-
Improving crop model inference through Bayesian melding with spatially-varying parameters
-
doi:10.1007/s13253-011-0070-x.
-
Finley AO, Banerjee S, Basso B. Improving crop model inference through Bayesian melding with spatially-varying parameters. J Agric Biol Environ Stat 2011, 16:453-474. doi:10.1007/s13253-011-0070-x.
-
(2011)
J Agric Biol Environ Stat
, vol.16
, pp. 453-474
-
-
Finley, A.O.1
Banerjee, S.2
Basso, B.3
-
28
-
-
84972517827
-
Design and analysis of experiments
-
doi:10.1214/ss/1177012413.
-
Sacks J, Welch WJ, Mitchell TJ, Wynn HP. Design and analysis of experiments. Stat Sci 1989, 4:409-423. doi:10.1214/ss/1177012413.
-
(1989)
Stat Sci
, vol.4
, pp. 409-423
-
-
Sacks, J.1
Welch, W.J.2
Mitchell, T.J.3
Wynn, H.P.4
-
29
-
-
84950437532
-
Bayesian prediction of deterministic functions, with applications to the design and analysis of computer experiments
-
doi:10.2307/2290511.
-
Currin C, Mitchell T, Morris M, Ylivisaker D. Bayesian prediction of deterministic functions, with applications to the design and analysis of computer experiments. J Am Stat Assoc 1991, 86:953-963. doi:10.2307/2290511.
-
(1991)
J Am Stat Assoc
, vol.86
, pp. 953-963
-
-
Currin, C.1
Mitchell, T.2
Morris, M.3
Ylivisaker, D.4
-
30
-
-
0007312235
-
Predicting the output from a complex computer code when fast approximations are available
-
doi:10.1093/biomet/87.1.1.
-
Kennedy MC, O'Hagan A. Predicting the output from a complex computer code when fast approximations are available. Biometrika 2000, 87:1-13. doi:10.1093/biomet/87.1.1.
-
(2000)
Biometrika
, vol.87
, pp. 1-13
-
-
Kennedy, M.C.1
O'Hagan, A.2
-
31
-
-
83555177267
-
Assessing first-order emulator inference for physical parameters in nonlinear mechanistic models
-
doi:10.1007/s13253-011-0073-7.
-
Hooten MB, Leeds WB, Fiechter J, Wikle CK. Assessing first-order emulator inference for physical parameters in nonlinear mechanistic models. J Agric Biol Environ Stat 2011, 16:475-494. doi:10.1007/s13253-011-0073-7.
-
(2011)
J Agric Biol Environ Stat
, vol.16
, pp. 475-494
-
-
Hooten, M.B.1
Leeds, W.B.2
Fiechter, J.3
Wikle, C.K.4
|