메뉴 건너뛰기




Volumn 29, Issue 2, 2012, Pages 69-77

Improvements in off design aeroengine performance prediction using analytic compressor map interpolation

Author keywords

Compressor map; Generalized compressor maps; Interpolation

Indexed keywords

AERO-ENGINE; BIVARIATE; COMPRESSOR MAPS; ERROR OUTPUTS; FUNCTION INTERPOLATION; INTERPOLATION ERROR; MAP INTERPOLATION; OPTIMIZATION ROUTINE; PERFORMANCE PREDICTION; QUANTITATIVE MEASURES; SHAPE VARIATIONS; USER-DEFINED PARAMETERS;

EID: 84867754536     PISSN: 03340082     EISSN: 21910332     Source Type: Journal    
DOI: 10.1515/tjj-2012-0012     Document Type: Article
Times cited : (15)

References (18)
  • 1
    • 0033884645 scopus 로고    scopus 로고
    • Modeling of turbine engine axial-flow compressor and turbine characteristics
    • M. Orkisz, S. Stawarz, Modeling of Turbine Engine Axial-Flow Compressor and Turbine Characteristics, Journal of Propulsion and Power, Vol. 16(2000), No. 2.
    • (2000) Journal of Propulsion and Power , vol.16 , Issue.2
    • Orkisz, M.1    Stawarz, S.2
  • 2
    • 84905722555 scopus 로고    scopus 로고
    • Compressor characteristics in gas turbine performance modelling
    • June 4-7 2001, New Orleans
    • G. Jones, P. Pilidis, B. Curnock, Compressor Characteristics in Gas Turbine Performance Modelling, Proceedings of ASME Turbo Expo 2001, June 4-7 2001, New Orleans.
    • (2001) Proceedings of ASME Turbo Expo
    • Jones, G.1    Pilidis, P.2    Curnock, B.3
  • 3
    • 0025814059 scopus 로고
    • An algorithm and criteria for compressor characteristics real time modeling and approximation
    • A. M. El Gammal, An algorithm and Criteria for Compressor Characteristics Real Time Modeling and Approximation, Journal of Engineering for Gas Turbines and Power, Vol. 113 (1991).
    • (1991) Journal of Engineering for Gas Turbines and Power , vol.113
    • El Gammal, A.M.1
  • 4
    • 0035299110 scopus 로고    scopus 로고
    • Some aspects of modeling compressor behavior in gas turbine performance calculations
    • C. Riegler, M. Bauer, J. Kurzke, Some Aspects of Modeling Compressor Behavior in Gas Turbine Performance Calculations, Journal of Turbomachinery, Vol. 123 (2001).
    • (2001) Journal of Turbomachinery , vol.123
    • Riegler, C.1    Bauer, M.2    Kurzke, J.3
  • 7
    • 38849085839 scopus 로고    scopus 로고
    • Surrogate modelling of compressor characteristics for fuel-cell applications
    • R. Tirnovan, S. Giurgea, A. Miraoui, M. Cirrincione, Surrogate modelling of compressor characteristics for fuel-cell applications, Applied Energy 85 (2008).
    • (2008) Applied Energy , vol.85
    • Tirnovan, R.1    Giurgea, S.2    Miraoui, A.3    Cirrincione, M.4
  • 8
    • 0037000726 scopus 로고    scopus 로고
    • Axial-flow compressor model based on a cascade stacking technique and neural networks
    • June 3-6 2002, Amsterdam
    • E. Benini, A. Toffolo, Axial-Flow Compressor Model Based on a Cascade Stacking Technique and Neural Networks, Proceedings of ASME Turbo Expo 2002, June 3-6 2002, Amsterdam.
    • (2002) Proceedings of ASME Turbo Expo
    • Benini, E.1    Toffolo, A.2
  • 9
    • 33749259605 scopus 로고    scopus 로고
    • Neural-network based analysis and prediction of a compressor's characteristic performance map
    • Y. Yu, L. Chen, F. Sun, C. Wu, Neural-network based analysis and prediction of a compressor's characteristic performance map, Applied Energy 84 (2007).
    • (2007) Applied Energy , vol.84
    • Yu, Y.1    Chen, L.2    Sun, F.3    Wu, C.4
  • 10
    • 61849184066 scopus 로고    scopus 로고
    • An artificial neural network approach to compressor performance prediction
    • K. Ghorbanian, M. Gholamrezaei, An artificial neural network approach to compressor performance prediction, Applied Energy 86 (2009).
    • (2009) Applied Energy , vol.86
    • Ghorbanian, K.1    Gholamrezaei, M.2
  • 11
    • 77049107158 scopus 로고    scopus 로고
    • Compressor map generation using a feed-forward neural network and rig data
    • Part A: J. Power and Energy
    • M. Gholamrezaei, K. Ghorbanian, Compressor map generation using a feed-forward neural network and rig data, Proceedings of the Institution of Mechanical Engineers, Vol. 224 (2010) Part A: J. Power and Energy.
    • (2010) Proceedings of the Institution of Mechanical Engineers , vol.224
    • Gholamrezaei, M.1    Ghorbanian, K.2
  • 12
    • 0035722447 scopus 로고    scopus 로고
    • Analytical and neural network models for gas turbine design and off-design simulation
    • A. Lazzaretto, A. Toffolo, Analytical and Neural Network Models for Gas Turbine Design and Off-Design Simulation, International Journal of Applied Thermodynamics, Vol. 4, No. 4 (2001).
    • (2001) International Journal of Applied Thermodynamics , vol.4 , Issue.4
    • Lazzaretto, A.1    Toffolo, A.2
  • 15
    • 78650988279 scopus 로고    scopus 로고
    • Inferencing component maps of gas turbine engine using bayesian framework
    • P. M. Tagade, K. Sudhakar, Inferencing Component Maps of Gas Turbine Engine Using Bayesian Framework, Journal of Propulsion and Power, Vol. 27, No. 1 (2011).
    • (2011) Journal of Propulsion and Power , vol.27 , Issue.1
    • Tagade, P.M.1    Sudhakar, K.2
  • 17
    • 38049127812 scopus 로고    scopus 로고
    • A new compressor map scaling procedure for preliminary conceptional design of gas turbines
    • May 2000, Munich
    • J. Kurzke, C. Riegler, A New Compressor Map Scaling Procedure for Preliminary Conceptional Design of Gas Turbines, Proceedings of ASME IGTI, Turbo Expo 2000, 8-11 May 2000, Munich.
    • (2000) Proceedings of ASME IGTI, Turbo Expo , pp. 8-11
    • Kurzke, J.1    Riegler, C.2
  • 18
    • 10244272254 scopus 로고    scopus 로고
    • A new scaling method for component maps of gas turbine using system identification
    • C. Kong, J. Ki, M. Kang, A New Scaling Method for Component Maps of Gas Turbine Using System Identification, Journal of Engineering for Gas Turbines and Power, Vol. 125 (2003).
    • (2003) Journal of Engineering for Gas Turbines and Power , vol.125
    • Kong, C.1    Ki, J.2    Kang, M.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.