메뉴 건너뛰기




Volumn 224, Issue 1, 2010, Pages 97-108

Compressor map generation using a feed-forward neural network and rig data

Author keywords

Axial compressor; Feed forward neural network; Performance map

Indexed keywords

AXIAL COMPRESSORS; BAYESIAN REGULARIZATION; EXPERIMENTAL DATA; LEVENBERG-MARQUARDT ALGORITHM; MAP GENERATION; MASS FLOW RATE; MAXIMUM EFFICIENCY; PERFORMANCE MAPS; PRESSURE RATIO; SHAFT SPEED;

EID: 77049107158     PISSN: 09576509     EISSN: None     Source Type: Journal    
DOI: 10.1243/09576509JPE792     Document Type: Article
Times cited : (35)

References (41)
  • 1
    • 0003516222 scopus 로고    scopus 로고
    • ASME Press, New York, co-published with Blackwell Science, UK
    • Walsh, P. P. and Fletcher, P. Gas turbine performance, 2004 (ASME Press, New York, co-published with Blackwell Science, UK).
    • (2004) Gas Turbine Performance
    • Walsh, P.P.1    Fletcher, P.2
  • 2
    • 0029717303 scopus 로고    scopus 로고
    • How to get component maps for an aircraft gas-turbine's performance calculations
    • paper no. 96-GT-164
    • Kurzke, J. How to get component maps for an aircraft gas-turbine's performance calculations. In Proceedings of the ASME Turbo Expo, 1996, paper no. 96-GT-164.
    • (1996) Proceedings of the ASME Turbo Expo
    • Kurzke, J.1
  • 4
    • 0025814059 scopus 로고
    • An algorithm and criteria for compressor characteristics real time modeling and approximation
    • El-Gammal, M. A. An algorithm and criteria for compressor characteristics real time modeling and approximation. ASME, J. Eng. Gas Turbines Power, 1991, 113, 112-117.
    • (1991) ASME, J. Eng. Gas Turbines Power , vol.113 , pp. 112-117
    • El-Gammal, M.A.1
  • 5
    • 0031238212 scopus 로고    scopus 로고
    • Jet engine component maps for performance modeling and diagnosis
    • Sieros, G., Stamatis, A., and Mathioudakis, K. Jet engine component maps for performance modeling and diagnosis. AIAA, J. Propuls. Power, 1997, 13(5), 665-674.
    • (1997) AIAA, J. Propuls. Power , vol.13 , Issue.5 , pp. 665-674
    • Sieros, G.1    Stamatis, A.2    Mathioudakis, K.3
  • 6
    • 85072439090 scopus 로고    scopus 로고
    • Turbocharger modeling for automotive control application
    • Moraal, P. and Kolmanovsky, I. Turbocharger modeling for automotive control application. SAE Trans., 1999, 108, 1324-1338.
    • (1999) SAE Trans. , vol.108 , pp. 1324-1338
    • Moraal, P.1    Kolmanovsky, I.2
  • 7
    • 0033884645 scopus 로고    scopus 로고
    • Modeling of turbine engine axial-flow compressor and turbine characteristics
    • Orkisz, M. and Stawarz, S. Modeling of turbine engine axial-flow compressor and turbine characteristics. AIAA, J. Propuls. Power, 2000, 16(2), 336-339.
    • (2000) AIAA, J. Propuls. Power , vol.16 , Issue.2 , pp. 336-339
    • Orkisz, M.1    Stawarz, S.2
  • 8
    • 33645778020 scopus 로고    scopus 로고
    • Component map generation of a gas turbine using genetic algorithms
    • Kong,C. D.,Kho, S., and Ki, J.Y. Component map generation of a gas turbine using genetic algorithms. ASME, J. Eng. Gas Turbines Power, 2006, 128(1), 92-96.
    • (2006) ASME, J. Eng. Gas Turbines Power , vol.128 , Issue.1 , pp. 92-96
    • Kong, C.D.1    Kho, S.2    Ki, J.Y.3
  • 9
    • 34848913212 scopus 로고    scopus 로고
    • Components map generation of gas turbine engine using genetic algorithms and engine performance deck data
    • Kong, C. D. and Ki, J. Y. Components map generation of gas turbine engine using genetic algorithms and engine performance deck data. ASME, J. Eng. Gas Turbines Power, 2007, 129(2), 312-317.
    • (2007) ASME, J. Eng. Gas Turbines Power , vol.129 , Issue.2 , pp. 312-317
    • Kong, C.D.1    Ki, J.Y.2
  • 10
    • 0029409621 scopus 로고
    • Neural network prediction and control of three-dimensional unsteady separated flowfields
    • Faller,W., Scott, J. S., and Luttges, M.W. Neural network prediction and control of three-dimensional unsteady separated flowfields. AIAA, J. Aircr., 1995, 32(1), 1213-1220.
    • (1995) AIAA J. Aircr. , vol.32 , Issue.1 , pp. 1213-1220
    • Faller, W.1    Scott, J.S.2    Luttges, M.W.3
  • 11
    • 0034851298 scopus 로고    scopus 로고
    • Application of artificial neural networks to the design of turbomachinery airfoils
    • Rai, M. M. and Madavan, N. K. Application of artificial neural networks to the design of turbomachinery airfoils. AIAA, J. Propuls. Power, 2001, 17(1), 176-183.
    • (2001) AIAA, J. Propuls. Power , vol.17 , Issue.1 , pp. 176-183
    • Rai, M.M.1    Madavan, N.K.2
  • 12
    • 0035722447 scopus 로고    scopus 로고
    • Analytical and neural network models for gas turbine design and offdesign simulation
    • Lazzaretto, A. and Toffolo, A. Analytical and neural network models for gas turbine design and offdesign simulation. Int. J. Appl. Thermodyn., 2001, 4(4), 173-182.
    • (2001) Int. J. Appl. Thermodyn. , vol.4 , Issue.4 , pp. 173-182
    • Lazzaretto, A.1    Toffolo, A.2
  • 13
    • 2142650152 scopus 로고    scopus 로고
    • Gas-turbine diagnostics using an artificial neural network for a high bypass ratio military turbofan engine
    • Joly, R. B., Ogaji, O. T., Singh, R., and Probert, S. D. Gas-turbine diagnostics using an artificial neural network for a high bypass ratio military turbofan engine. J. Appl. Energy, 2004, 78(4), 397-418.
    • (2004) J. Appl. Energy , vol.78 , Issue.4 , pp. 397-418
    • Joly, R.B.1    Ogaji, O.T.2    Singh, R.3    Probert, S.D.4
  • 14
    • 31644449226 scopus 로고    scopus 로고
    • Gas turbine diagnostics using a soft computing approach
    • Verma, R., Roy, N., and Ganguli, R. Gas turbine diagnostics using a soft computing approach. Appl. Math. Comput., 2006, 172(1), 1342-1363.
    • (2006) Appl. Math. Comput. , vol.172 , Issue.1 , pp. 1342-1363
    • Verma, R.1    Roy, N.2    Ganguli, R.3
  • 15
    • 10244270054 scopus 로고    scopus 로고
    • The use of kalman filter and neural network methodologies in gas turbine performance diagnostics: A comparative study
    • Volponi, A.J., Depold, H., Ganguli, R., and Daguang, C. The use of kalman filter and neural network methodologies in gas turbine performance diagnostics: a comparative study.ASME, J.Eng. GasTurbinesPower, 2003, 125(4), 917-924.
    • (2003) ASME J.Eng. GasTurbinesPower , vol.125 , Issue.4 , pp. 917-924
    • Volponi, A.J.1    Depold, H.2    Ganguli, R.3    Daguang, C.4
  • 16
    • 10244272087 scopus 로고    scopus 로고
    • Application of fuzzy logic for fault isolation of jet engines
    • Ganguli, R. Application of fuzzy logic for fault isolation of jet engines. ASME, J. Eng. Gas Turbines Power, 2003, 125(3), 617-623.
    • (2003) ASME, J. Eng. Gas Turbines Power , vol.125 , Issue.3 , pp. 617-623
    • Ganguli, R.1
  • 17
    • 0036494222 scopus 로고    scopus 로고
    • A fuzzy logic intelligent system for gas turbine module and system fault isolation
    • Ganguli, R. A fuzzy logic intelligent system for gas turbine module and system fault isolation. AIAA, J. Propuls. Power, 2002, 18(2), 440-447.
    • (2002) AIAA, J. Propuls. Power , vol.18 , Issue.2 , pp. 440-447
    • Ganguli, R.1
  • 18
    • 33646845458 scopus 로고    scopus 로고
    • Modeling and optimization of the air system in polymer exchange membrane fuel cell system
    • Bao, C., Ouyang, M., and Yi, B. Modeling and optimization of the air system in polymer exchange membrane fuel cell system. J. Power Sources, 2006, 156(2), 232-243.
    • (2006) J. Power Sources , vol.156 , Issue.2 , pp. 232-243
    • Bao, C.1    Ouyang, M.2    Yi, B.3
  • 19
    • 33749259605 scopus 로고    scopus 로고
    • Neural network based analysis and prediction of a compressor's characteristic performance map
    • Yu,Y., Chen, L., Sun, F., andWu,C. Neural network based analysis and prediction of a compressor's characteristic performance map. J. Appl. Energy, 2007, 84(1), 48-55.
    • (2007) J. Appl. Energy , vol.84 , Issue.1 , pp. 48-55
    • Yu, Y.1    Chen, L.2    Sun, F.3    Wu, C.4
  • 21
    • 34548745243 scopus 로고    scopus 로고
    • Axial compressor performance map prediction using artificial neural network
    • Proceedings of the ASME Turbo Expo 2007 - Power for Land, Sea, and Air
    • Ghorbanian, K. and Gholamrezaei,M. Axial compressor performance map prediction using artificial neural network. In Proceedings of the ASME Turbo Expo, paper no. GT2007-27165,Montreal, Canada, 2007, pp. 1199-1208. (Pubitemid 47436524)
    • (2007) Proceedings of the ASME Turbo Expo , vol.6 , Issue.PART B , pp. 1199-1208
    • Ghorbanian, K.1    Gholamrezaei, M.2
  • 22
    • 61849184066 scopus 로고    scopus 로고
    • An artificial neural network approach to compressor performance prediction
    • Ghorbanian, K. and Gholamrezaei, M. An artificial neural network approach to compressor performance prediction. J. Appl. Energy, 2009, 86(8), 1210-1221.
    • (2009) J. Appl. Energy , vol.86 , Issue.8 , pp. 1210-1221
    • Ghorbanian, K.1    Gholamrezaei, M.2
  • 23
    • 23844432226 scopus 로고    scopus 로고
    • Development and experimental validation of a compressor dynamic model
    • Venturini,M. Development and experimental validation of a compressor dynamic model. ASME, J. Turbomach., 2005, 127(3), 599-608.
    • (2005) ASME J. Turbomach. , vol.127 , Issue.3 , pp. 599-608
    • Venturini, M.1
  • 24
    • 33845689090 scopus 로고    scopus 로고
    • Simulation of compressor transient behavior through recurrent neural network models
    • Venturini,M. Simulation of compressor transient behavior through recurrent neural network models. ASME, J. Turbomach., 2006, 128(4), 1-11.
    • (2006) ASME J. Turbomach. , vol.128 , Issue.4 , pp. 1-11
    • Venturini, M.1
  • 25
    • 34548253345 scopus 로고    scopus 로고
    • Optimization of a real-time simulator based on recurrent neural networks for compressor transient behavior prediction
    • Venturini, M. Optimization of a real-time simulator based on recurrent neural networks for compressor transient behavior prediction. ASME, J. Turbomach., 2007, 129(3), 1-11.
    • (2007) ASME J. Turbomach. , vol.129 , Issue.3 , pp. 1-11
    • Venturini, M.1
  • 27
    • 0022440306 scopus 로고
    • A theory of post-stall transients in axial compression systems: Part i - Development of equations
    • Moore, F. K. and Greitzer, E. M. A theory of post-stall transients in axial compression systems: part I - development of equations. ASME, J. Eng. Gas Turbines Power, 1986, 108, 68-76.
    • (1986) ASME, J. Eng. Gas Turbines Power , vol.108 , pp. 68-76
    • Moore, F.K.1    Greitzer, E.M.2
  • 29
    • 0029756726 scopus 로고    scopus 로고
    • Nonlinear control of surge in axial compression systems
    • Badmus, O. O., Chowdhury, S., and Nett, C. N. Nonlinear control of surge in axial compression systems. Automatica, 1996, 32, 59-70.
    • (1996) Automatica , vol.32 , pp. 59-70
    • Badmus, O.O.1    Chowdhury, S.2    Nett, C.N.3
  • 32
    • 4944229069 scopus 로고    scopus 로고
    • Modeling of surge in free-spool centrifugal compressors: Experimental validation
    • Gravdahl,J.T.,Willems,F., Jager,B.D.E.,and Egeland,O. Modeling of surge in free-spool centrifugal compressors: Experimental validation. AIAA, J. Propuls. Power, 2004, 20, 849-857.
    • (2004) AIAA, J. Propuls. Power , vol.20 , pp. 849-857
    • Gravdahl, J.T.1    Willems, F.2    Jager, B.D.E.3    Egeland, O.4
  • 34
    • 0024880831 scopus 로고
    • Multilayer feedforward networks are universal approximators
    • Hornik, K. M., Stinchcombe, M., and White, H. Multilayer feedforward networks are universal approximators. Neural Netw., 1989, 2, 359-366.
    • (1989) Neural Netw. , vol.2 , pp. 359-366
    • Hornik, K.M.1    Stinchcombe, M.2    White, H.3
  • 35
    • 85011438572 scopus 로고    scopus 로고
    • Approximation theory of the MLP model in neural networks
    • Pinkus, A. Approximation theory of the MLP model in neural networks. Acta Numer., 1999, 8, 143-195.
    • (1999) Acta Numer. , vol.8 , pp. 143-195
    • Pinkus, A.1
  • 36
    • 0033480745 scopus 로고    scopus 로고
    • Generalization bounds for function approximation from scattered noisy data
    • Niyogi, P. and Girosi, F. Generalization bounds for function approximation from scattered noisy data. Adv. Comput.Math., 1999, 10, 51-80.
    • (1999) Adv. Comput.Math. , vol.10 , pp. 51-80
    • Niyogi, P.1    Girosi, F.2
  • 38
    • 0028543366 scopus 로고
    • Training multilayer networks with the marquardt algorithm
    • Hagan, M. T. and Menhaj, M. Training multilayer networks with the marquardt algorithm. IEEE Trans.,Neural Netw., 1994, 5(6), 989-993.
    • (1994) IEEE Trans.,Neural Netw. , vol.5 , Issue.6 , pp. 989-993
    • Hagan, M.T.1    Menhaj, M.2
  • 39
    • 0001025418 scopus 로고
    • Bayesian interpolation
    • MacKay,D. J.C. Bayesian interpolation.Neural Comput., 1992, 4(3), 415-447.
    • (1992) Neural Comput. , vol.4 , Issue.3 , pp. 415-447
    • MacKay, D.J.C.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.