-
1
-
-
55349089531
-
Sparse estimation automatically selects voxels relevant for the decoding of fMRI activity patterns
-
O. Yamashita, M. aki Sato, T. Yoshioka, F. Tong, and Y. Kamitani, "Sparse estimation automatically selects voxels relevant for the decoding of fMRI activity patterns," NeuroImage, vol. 42, no. 4, pp. 1414-1429, 2008.
-
(2008)
NeuroImage
, vol.42
, Issue.4
, pp. 1414-1429
-
-
Yamashita, O.1
Aki Sato, M.2
Yoshioka, T.3
Tong, F.4
Kamitani, Y.5
-
2
-
-
77951976541
-
Sparse logistic regression for whole-brain classification of fmri data
-
S. Ryali, K. Supekar, D. A. Abrams, and V. Menon, "Sparse logistic regression for whole-brain classification of fmri data." NeuroImage, vol. 51, no. 2, pp. 752-764, 2010.
-
(2010)
NeuroImage
, vol.51
, Issue.2
, pp. 752-764
-
-
Ryali, S.1
Supekar, K.2
Abrams, D.A.3
Menon, V.4
-
3
-
-
79959811645
-
Total variation regularization for fMRI-based prediction of behaviour
-
Feb.
-
V. Michel, A. Gramfort, G. Varoquaux, E. Eger, and B. Thirion, "Total variation regularization for fMRI-based prediction of behaviour." IEEE Transactions on Medical Imaging, vol. 30, no. 7, pp. 1328-1340, Feb. 2011.
-
(2011)
IEEE Transactions on Medical Imaging
, vol.30
, Issue.7
, pp. 1328-1340
-
-
Michel, V.1
Gramfort, A.2
Varoquaux, G.3
Eger, E.4
Thirion, B.5
-
4
-
-
28244492778
-
Classifying brain states and determining the discriminating activation patterns: Support vector machine on functional MRI data
-
J. Mouro-Miranda, A. L. Bokde, C. Born, H. Hampel, and M. Stetter, "Classifying brain states and determining the discriminating activation patterns: Support vector machine on functional MRI data," NeuroImage, vol. 28, p. 980, 2005.
-
(2005)
NeuroImage
, vol.28
, pp. 980
-
-
Mouro-Miranda, J.1
Bokde, A.L.2
Born, C.3
Hampel, H.4
Stetter, M.5
-
5
-
-
0008371352
-
-
MIT Press, Cambridge, MA
-
R. Herbrich, T. Graepel, and K. Obermayer, Large margin rank boundaries for ordinal regression. MIT Press, Cambridge, MA, 2000, vol. 88, pp. 115-132.
-
(2000)
Large Margin Rank Boundaries for Ordinal Regression
, vol.88
, pp. 115-132
-
-
Herbrich, R.1
Graepel, T.2
Obermayer, K.3
-
6
-
-
33750338615
-
Adapting ranking svm to document retrieval
-
Proceedings of the 29th annual international ACM SIGIR conference on Research and development in information retrieval, ser. New York, NY, USA: ACM
-
Y. Cao, J. Xu, T.-Y. Liu, H. Li, Y. Huang, and H.-W. Hon, "Adapting ranking svm to document retrieval," in Proceedings of the 29th annual international ACM SIGIR conference on Research and development in information retrieval, ser. SIGIR '06. New York, NY, USA: ACM, 2006, pp. 186-193.
-
(2006)
SIGIR '06
, pp. 186-193
-
-
Cao, Y.1
Xu, J.2
Liu, T.-Y.3
Li, H.4
Huang, Y.5
Hon, H.-W.6
-
7
-
-
31844452516
-
Log-linear models for label ranking
-
O. Dekel, C. Manning, and Y. Singer, "Log-linear models for label ranking," Advances in Neural Information Processing Systems, vol. 16, no. 2, p. 497504, 2003.
-
(2003)
Advances in Neural Information Processing Systems
, vol.16
, Issue.2
, pp. 497504
-
-
Dekel, O.1
Manning, C.2
Singer, Y.3
-
8
-
-
50949133669
-
Liblinear: A library for large linear classification
-
1/2008
-
R. E. Fan, K. W. Chang, C. J. Hsieh, X. R. Wang, and C. J. Lin, "Liblinear: A library for large linear classification," The Journal of Machine Learning Research, vol. 9, no. 6/1/2008, pp. 1871-1874, 2008.
-
(2008)
The Journal of Machine Learning Research
, vol.9
, Issue.6
, pp. 1871-1874
-
-
Fan, R.E.1
Chang, K.W.2
Hsieh, C.J.3
Wang, X.R.4
Lin, C.J.5
-
9
-
-
80555140075
-
Scikit-learn: Machine Learning in Python
-
F. Pedregosa, G. Varoquaux, A. Gramfort et al., "Scikit-learn: Machine Learning in Python ," Journal of Machine Learning Research, vol. 12, pp. 2825-2830, 2011.
-
(2011)
Journal of Machine Learning Research
, vol.12
, pp. 2825-2830
-
-
Pedregosa, F.1
Varoquaux, G.2
Gramfort, A.3
|