메뉴 건너뛰기




Volumn 19, Issue 3, 2009, Pages 385-388

SVM model for estimating the parameters of the probability-integral method of predicting mining subsidence

Author keywords

artificial neural networks; least squares support vector machine; mining subsidence; probability integral method

Indexed keywords

ARTIFICIAL NEURAL NETWORKS; BACK-PROPAGATION NEURAL NETWORKS; EMPIRICAL RISK MINIMIZATION; INTEGRAL METHOD; LEARNING AND TRAINING; LEAST SQUARES SUPPORT VECTOR MACHINE; LEAST SQUARES SUPPORT VECTOR MACHINES; MINING SUBSIDENCE; NEW MATHEMATICAL MODEL; NEW MODEL; STATISTICAL THEORY; SVM MODEL;

EID: 67649399014     PISSN: 16745264     EISSN: None     Source Type: Journal    
DOI: 10.1016/S1674-5264(09)60072-7     Document Type: Article
Times cited : (39)

References (10)
  • 2
    • 27744436683 scopus 로고    scopus 로고
    • Surface movement regularity of super-wide mining face with top-coal caving
    • Ren R.H. Surface movement regularity of super-wide mining face with top-coal caving. Journal of China University of Mining & Technology 15 1 (2005) 68-71
    • (2005) Journal of China University of Mining & Technology , vol.15 , Issue.1 , pp. 68-71
    • Ren, R.H.1
  • 3
    • 12344287858 scopus 로고    scopus 로고
    • Artificial neural network model for predicting parameters of probability-integral method
    • (In Chinese).
    • Guo W.B., Deng K.Z., and Zou Y.F. Artificial neural network model for predicting parameters of probability-integral method. Journal of China University of Mining & Technology 33 3 (2004) 322-326 (In Chinese).
    • (2004) Journal of China University of Mining & Technology , vol.33 , Issue.3 , pp. 322-326
    • Guo, W.B.1    Deng, K.Z.2    Zou, Y.F.3
  • 4
    • 67649395409 scopus 로고    scopus 로고
    • Optimal selection of prediction parameters for probability-integral method using particle swarm optimization and BP neural network
    • (In Chinese).
    • Yu N.F., and Yang H.C. Optimal selection of prediction parameters for probability-integral method using particle swarm optimization and BP neural network. Science of Surveying and Mapping 33 2 (2008) 78-80 (In Chinese).
    • (2008) Science of Surveying and Mapping , vol.33 , Issue.2 , pp. 78-80
    • Yu, N.F.1    Yang, H.C.2
  • 5
    • 33846544859 scopus 로고    scopus 로고
    • Application of SVM in analyzing the head stream of gushing water in coal mine
    • Yan Z.G., Zhang H.R., and Du P.J. Application of SVM in analyzing the head stream of gushing water in coal mine. Journal of China University of Mining & Technology 16 4 (2006) 433-438
    • (2006) Journal of China University of Mining & Technology , vol.16 , Issue.4 , pp. 433-438
    • Yan, Z.G.1    Zhang, H.R.2    Du, P.J.3
  • 7
    • 0346250790 scopus 로고    scopus 로고
    • Practical selection of SVM parameters and noise estimation of SVM regression
    • Vladimir C., and Ma Y.Q. Practical selection of SVM parameters and noise estimation of SVM regression. Neural Networks 17 1 (2004) 113-126
    • (2004) Neural Networks , vol.17 , Issue.1 , pp. 113-126
    • Vladimir, C.1    Ma, Y.Q.2
  • 8
    • 47349128149 scopus 로고    scopus 로고
    • A forecasting and forewarning model for methane hazard in working face of coal mine based on LS-SVM
    • Cao S.G., Liu Y.B., and Wang Y.P. A forecasting and forewarning model for methane hazard in working face of coal mine based on LS-SVM. Journal of China University of Mining & Technology 18 2 (2008) 172-176
    • (2008) Journal of China University of Mining & Technology , vol.18 , Issue.2 , pp. 172-176
    • Cao, S.G.1    Liu, Y.B.2    Wang, Y.P.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.