메뉴 건너뛰기




Volumn 18, Issue 12, 2012, Pages 2829-2838

Scatter/gather clustering: Flexibly incorporating user feedback to steer clustering results

Author keywords

alternative clustering; constrained clustering; Scatter gather clustering

Indexed keywords

ALTERNATIVE CLUSTERING; BIOSONAR; CLUSTERING APPROACH; CLUSTERING RESULTS; CONSTRAINED CLUSTERING; DIVERSE APPLICATIONS; DOMAIN EXPERTS; DOMAIN KNOWLEDGE; INTERACTION STYLES; NON-LINEAR OPTIMIZATION; SCATTER/GATHER CLUSTERING; SINGLE-STEP; USER FEEDBACK;

EID: 84867637609     PISSN: 10772626     EISSN: None     Source Type: Journal    
DOI: 10.1109/TVCG.2012.258     Document Type: Article
Times cited : (23)

References (64)
  • 1
    • 74949124980 scopus 로고    scopus 로고
    • Recommender systems: Incremental clustering on web log data
    • S. R. Aghabozorgi and T. Y. Wah. Recommender Systems: Incremental Clustering on Web Log Data. In ICIS '09, p812-818, 2009.
    • (2009) ICIS , vol.9 , pp. 812-818
    • Aghabozorgi, S.R.1    Wah, T.Y.2
  • 2
    • 0032090765 scopus 로고    scopus 로고
    • Automatic subspace clustering of high dimensional data for data mining applications
    • R. Agrawal, J. Gehrke, D. Gunopulos, and P. Raghavan. Automatic Sub- space Clustering of High Dimensional Data for Data Mining Applica- tions. SIGMOD Rec., 27(2):94-105, 1998. (Pubitemid 128655960)
    • (1998) SIGMOD Record , vol.27 , Issue.2 , pp. 94-105
    • Agrawal, R.1    Gehrke, J.2    Gunopulos, D.3    Raghavan, P.4
  • 3
    • 85088108223 scopus 로고    scopus 로고
    • Steerable clustering for visual analysis of ecosystems
    • Z. Ahmed, P. Yost, A. McGovern, and C. Weaver. Steerable Clustering for Visual Analysis of Ecosystems. In EuroVA '11, p49-52, 2011.
    • EuroVA , vol.11 , Issue.2011 , pp. 49-52
    • Ahmed, Z.1    Yost, P.2    McGovern, A.3    Weaver, C.4
  • 4
    • 57349124820 scopus 로고    scopus 로고
    • Structuring collections with scatter/gather ex- tensions
    • O. Alonso and J. Talbot. Structuring Collections with Scatter/Gather Ex- tensions. In SIGIR '08, p697-698, 2008.
    • (2008) SIGIR , vol.8 , pp. 697-698
    • Alonso, O.1    Talbot, J.2
  • 7
    • 0032304703 scopus 로고    scopus 로고
    • Similarity clustering of di- mensions for an enhanced visualization of multidimensional data
    • M. Ankerst, S. Berchtold, and D. A. Keim. Similarity Clustering of Di- mensions for an Enhanced Visualization of Multidimensional Data. In INFOVIS '98, p52-60, 1998.
    • (1998) INFOVIS , vol.98 , pp. 52-60
    • Ankerst, M.1    Berchtold, S.2    Keim, D.A.3
  • 8
    • 78650932277 scopus 로고    scopus 로고
    • Cluster cor- respondence views for enhanced analysis of som displays
    • J. Bernard, T. von Landesberger, S. Bremm, and T. Schreck. Cluster Cor- respondence Views for Enhanced Analysis of SOM Displays. In VAST '10, p217-218, 2010.
    • VAST , vol.10 , Issue.2010 , pp. 217-218
    • Bernard, J.1    Von Landesberger, T.2    Bremm, S.3    Schreck, T.4
  • 9
    • 33751255087 scopus 로고    scopus 로고
    • Evaluation of clustering algorithms for protein-protein interaction networks
    • S. Brohee and J. van Helden. Evaluation of Clustering Algorithms for Protein-protein Interaction Networks. BMC Bioinformatics, 7:488, 2006.
    • (2006) BMC Bioinformatics , vol.7 , pp. 488
    • Brohee, S.1    Van Helden, J.2
  • 11
    • 33745475658 scopus 로고    scopus 로고
    • IVIBRATE: Interactive visualization-based framework for clustering large datasets
    • DOI 10.1145/1148020.1148024
    • K. Chen and L. Liu. iVIBRATE: Interactive Visualization-based Frame- work for Clustering Large Datasets. ACM Trans. Inf. Syst., 24(2):245- 294, 2006. (Pubitemid 44180739)
    • (2006) ACM Transactions on Information Systems , vol.24 , Issue.2 , pp. 245-294
    • Chen, K.1    Liu, L.2
  • 12
    • 0002646822 scopus 로고    scopus 로고
    • Entropy-based subspace clustering for mining numerical data
    • C. Cheng, A. W. Fu, and Y. Zhang. Entropy-based Subspace Clustering for Mining Numerical Data. In KDD '99, p84-93, 1999.
    • (1999) KDD , vol.99 , pp. 84-93
    • Cheng, C.1    Fu, A.W.2    Zhang, Y.3
  • 13
    • 72849129962 scopus 로고    scopus 로고
    • Two-stage framework for visualization of clustered high dimensional data
    • J. Choo, S. Bohn, and H. Park. Two-stage Framework for Visualization of Clustered High Dimensional Data. In VAST '09, p67-74, 2009.
    • (2009) VAST , vol.9 , pp. 67-74
    • Choo, J.1    Bohn, S.2    Park, H.3
  • 14
    • 0031246477 scopus 로고    scopus 로고
    • Point Signatures: A New Representation for 3D Object Recognition
    • C. S. Chua and R. Jarvis. Point Signatures: A New Representation for 3D Object Recognition. Int. J. Comput. Vision, 25(1):63-85, 1997. (Pubitemid 127506561)
    • (1997) International Journal of Computer Vision , vol.25 , Issue.1 , pp. 63-85
    • Chua, C.S.1    Jarvis, R.2
  • 15
    • 0030303844 scopus 로고    scopus 로고
    • An interior, trust region approach for nonlinear minimization subject to bounds
    • T. Coleman and Y. Li. An Interior, Trust Region Approach for Nonlinear Minimization Subject to Bounds. SIAM Journal on Optimization, 6:418- 445, 1996.
    • (1996) SIAM Journal on Optimization , vol.6 , pp. 418-445
    • Coleman, T.1    Li, Y.2
  • 16
    • 49749102773 scopus 로고    scopus 로고
    • Non-redundant multi-view clustering via orthogonalization
    • Y. Cui, X. Fern, and J. G. Dy. Non-redundant Multi-view Clustering via Orthogonalization. In ICDM '07, p133-142, 2007.
    • (2007) ICDM , vol.7 , pp. 133-142
    • Cui, Y.1    Fern, X.2    Dy, J.G.3
  • 17
    • 0027719144 scopus 로고
    • Constant interaction- time scatter/gather browsing of very large document collections
    • D. R. Cutting, D. R. Karger, and J. O. Pedersen. Constant Interaction- time Scatter/Gather Browsing of Very Large Document Collections. In SIGIR '93, p126-134, 1993.
    • (1993) SIGIR , vol.93 , pp. 126-134
    • Cutting, D.R.1    Karger, D.R.2    Pedersen, J.O.3
  • 18
    • 0026961606 scopus 로고
    • Scatter/gather: A cluster-based approach to browsing large document col- lections
    • D. R. Cutting, D. R. Karger, J. O. Pedersen, and J. W. Tukey. Scat- ter/Gather: a Cluster-based Approach to Browsing Large Document Col- lections. In SIGIR '92, p318-329, 1992.
    • (1992) SIGIR , vol.92 , pp. 318-329
    • Cutting, D.R.1    Karger, D.R.2    Pedersen, J.O.3    Tukey, J.W.4
  • 19
    • 77956211962 scopus 로고    scopus 로고
    • A hierarchical information theoretic technique for the discovery of non-linear alternative clusterings
    • X. Dang and J. Bailey. A Hierarchical Information Theoretic Technique for the Discovery of Non-linear Alternative Clusterings. In KDD '10, p573-582, 2010.
    • (2010) KDD , vol.10 , pp. 573-582
    • Dang, X.1    Bailey, J.2
  • 20
    • 84873124076 scopus 로고    scopus 로고
    • Generation of alternative clusterings using the CAMI approach
    • X. Dang and J. Bailey. Generation of Alternative Clusterings Using the CAMI Approach. In SDM '10, p118-129, 2010.
    • (2010) SDM , vol.10 , pp. 118-129
    • Dang, X.1    Bailey, J.2
  • 21
    • 67049098008 scopus 로고    scopus 로고
    • Finding alternative clusterings using constraints
    • I. Davidson and Z. Qi. Finding Alternative Clusterings Using Constraints. In ICDM '08, p773-778, 2008.
    • (2008) ICDM , vol.8 , pp. 773-778
    • Davidson, I.1    Qi, Z.2
  • 22
    • 33745482785 scopus 로고    scopus 로고
    • Clustering with constraints: Feasibility issues and the k-means algorithm
    • I. Davidson and S. S. Ravi. Clustering with Constraints: Feasibility Issues and the k-Means Algorithm. In SDM '05, p201-211, 2005.
    • (2005) SDM , vol.5 , pp. 201-211
    • Davidson, I.1    Ravi, S.S.2
  • 24
    • 34648820174 scopus 로고    scopus 로고
    • Interactive visual clus- tering
    • M. desJardins, J. MacGlashan, and J. Ferraioli. Interactive Visual Clus- tering. In IUI '07, p361-364, 2007.
    • (2007) IUI , vol.7 , pp. 361-364
    • Desjardins, M.1    MacGlashan, J.2    Ferraioli, J.3
  • 27
    • 0004669681 scopus 로고
    • Clustering the rows and columns of a contingency table
    • M. Greenacre. Clustering the Rows and Columns of a Contingency Table. J. of Classification, 5(1):39-51, 1988.
    • (1988) J. of Classification , vol.5 , Issue.1 , pp. 39-51
    • Greenacre, M.1
  • 30
    • 79959723834 scopus 로고    scopus 로고
    • Interactive schematic summaries for exploration of surveillance video
    • M. Hoferlin, B. Hoferlin, D. Weiskopf, and G. Heidemann. Interactive Schematic Summaries for Exploration of Surveillance Video. In ICMR '11, p9:1-9:8, 2011.
    • (2011) ICMR , vol.11 , Issue.9 , pp. 91-98
    • Hoferlin, M.1    Hoferlin D, B.2    Weiskopf3    Heidemann, G.4
  • 32
    • 77956222416 scopus 로고    scopus 로고
    • Unifying dependent clustering and disparate clus- tering for non-homogeneous data
    • M. S. Hossain, S. Tadepalli, L. T. Watson, I. Davidson, R. F. Helm, and N. Ramakrishnan. Unifying Dependent Clustering and Disparate Clus- tering for Non-homogeneous Data. In KDD '10, p593-602, 2010.
    • KDD , vol.10 , Issue.2010 , pp. 593-602
    • Hossain, M.S.1    Tadepalli, S.2    Watson, L.T.3    Davidson, I.4    Helm, R.F.5    Ramakrishnan, N.6
  • 33
    • 33750311278 scopus 로고    scopus 로고
    • Text clustering with extended user feed- back
    • Y. Huang and T. M. Mitchell. Text Clustering with Extended User Feed- back. In SIGIR '06, p413-420, 2006.
    • (2006) SIGIR , vol.6 , pp. 413-420
    • Huang, Y.1    Mitchell, T.M.2
  • 34
    • 79956020556 scopus 로고    scopus 로고
    • Exploiting user feedback to improve quality of search results clustering
    • I. Hwang, M. Kahng, and S.-g. Lee. Exploiting User Feedback to Improve Quality of Search Results Clustering. In ICUIMC '11, p68:1-68:5, 2011.
    • (2011) ICUIMC , vol.11 , Issue.68 , pp. 681-685
    • Hwang, I.1    Kahng, M.2    Lee, S.-G.3
  • 35
    • 54949133774 scopus 로고    scopus 로고
    • In-teractive visual analysis of time-series microarray data
    • D. H. Jeong, A. Darvish, K. Najarian, J. Yang, and W. Ribarsky. In- teractive Visual Analysis of Time-series Microarray Data. Vis. Comput., 24(12):1053-1066, 2008.
    • (2008) Vis. Comput , vol.24 , Issue.12 , pp. 1053-1066
    • Jeong, D.H.1    Darvish, A.2    Najarian, K.3    Yang, J.4    Ribarsky, W.5
  • 36
    • 33644660320 scopus 로고    scopus 로고
    • The evolution of echolocation in bats
    • DOI 10.1016/j.tree.2006.01.001, PII S0169534706000218
    • G. Jones and E. C. Teeling. The Evolution of Echolocation in Bats. Trends in Ecology & Evolution, 21(3):149 - 156, 2006. (Pubitemid 43327289)
    • (2006) Trends in Ecology and Evolution , vol.21 , Issue.3 , pp. 149-156
    • Jones, G.1    Teeling, E.C.2
  • 37
    • 0031641977 scopus 로고    scopus 로고
    • Axis-specified search: A fine-grained full-text search method for gathering and structuring excerpts
    • Y. Kanada. Axis-specified Search: a Fine-grained Full-text Search Method for Gathering and Structuring Excerpts. In DL '98, p108- 117, 1998.
    • (1998) DL , vol.98 , pp. 108-117
    • Kanada, Y.1
  • 39
    • 11644280909 scopus 로고
    • New contributions to the optics of intensely light-scattering materials
    • P. Kubelka. New Contributions to the Optics of Intensely Light-Scattering Materials. Part I. J. Opt. Soc. Am., 38(5):448-448, 1948.
    • (1948) Part I. J. Opt. Soc. Am , vol.38 , Issue.5 , pp. 448-448
    • Kubelka, P.1
  • 40
    • 49749129595 scopus 로고    scopus 로고
    • Solving consensus and semi-supervised clustering problems using nonnegative matrix factorization
    • T. Li, C. Ding, and M. I. Jordan. Solving Consensus and Semi-supervised Clustering Problems Using Nonnegative Matrix Factorization. In ICDM '07, p577-582, 2007.
    • (2007) ICDM , vol.7 , pp. 577-582
    • Li, T.1    Ding, C.2    Jordan, M.I.3
  • 41
    • 84867639822 scopus 로고    scopus 로고
    • Automatic x-ray image segmentation for threat detection
    • J. Liang, B. Abidi, and M. Abidi. Automatic X-ray Image Segmentation for Threat Detection. In ICCIMA '03, p396 - 401, 2003.
    • (2003) ICCIMA , vol.3 , pp. 396-401
    • Liang, J.1    Abidi, B.2    Abidi, M.3
  • 42
    • 79958114988 scopus 로고    scopus 로고
    • A method for characterizing the biodiversity in bat pinnae as a basis for engineering analysis
    • J. Ma and R.Muller. A Method for Characterizing the Biodiversity in Bat Pinnae as a Basis for Engineering Analysis. Bioinspiration & Biomimet- ics, 6(2):026008, 2011.
    • (2011) Bioinspiration & Biomimetics , vol.6 , Issue.2 , pp. 026008
    • Ma, J.1    Muller, R.2
  • 43
    • 84865659127 scopus 로고    scopus 로고
    • Ex-tracting data records from the web using tag path clustering
    • G. Miao, J. Tatemura, W.-P. Hsiung, A. Sawires, and L. E. Moser. Ex- tracting Data Records from the Web using Tag Path Clustering. In WWW '09, p981-990, 2009.
    • (2009) WWW , vol.9 , pp. 981-990
    • Miao, G.1    Tatemura, J.2    Hsiung, W.-P.3    Sawires, A.4    Moser, L.E.5
  • 44
    • 77956399193 scopus 로고    scopus 로고
    • Numerical analysis of biosonar beamforming mechanisms and strategies in bats
    • R. Muller. Numerical Analysis of Biosonar Beamforming Mechanisms and Strategies in Bats. J Acoust Soc Am., 128(3):1414-1425, 2010.
    • (2010) J Acoust Soc Am , vol.128 , Issue.3 , pp. 1414-1425
    • Muller, R.1
  • 45
    • 0038724494 scopus 로고    scopus 로고
    • Consensus clustering: A resampling-based method for class discovery and visualization of gene expression microarray data
    • S. Monti, P. Tamayo, J. Mesirov, and T. Golub. Consensus Clustering: A Resampling-Based Method for Class Discovery and Visualization of Gene Expression Microarray Data. Machine Learning, 52:91-118, 2003.
    • (2003) Machine Learning , vol.52 , pp. 91-118
    • Monti, S.1    Tamayo, P.2    Mesirov, J.3    Golub, T.4
  • 46
    • 11144277826 scopus 로고    scopus 로고
    • A numerical study of the role of the tragus in the big brown bat
    • R.Muller. A Numerical Study of the Role of the Tragus in the Big Brown Bat. J Acoust Soc Am, 116(6):3701-12, 2004.
    • (2004) J Acoust Soc Am , vol.116 , Issue.6 , pp. 3701-3712
    • Muller, R.1
  • 47
    • 33745200319 scopus 로고    scopus 로고
    • Block clustering of contingency table and mixture model
    • M. Nadif and G. Govaert. Block Clustering of Contingency Table and Mixture Model. In IDA '05, p249-259, 2005.
    • (2005) IDA , vol.5 , pp. 249-259
    • Nadif, M.1    Govaert, G.2
  • 48
    • 41549149938 scopus 로고    scopus 로고
    • Cluster sculp-tor: A visual analytics tool for high-dimensional data
    • E. J. Nam, Y. Han, K. Mueller, A. Zelenyuk, and D. Imre. ClusterSculp- tor: A Visual Analytics Tool for High-Dimensional Data. In VAST '07, p75-82, 2007.
    • (2007) VAST , vol.7 , pp. 75-82
    • Nam, E.J.1    Han, Y.2    Mueller, K.3    Zelenyuk, A.4    Imre, D.5
  • 49
    • 77956508144 scopus 로고    scopus 로고
    • Multiple non-redundant spectral clustering views
    • D. Niu, J. G. Dy, and M. I. Jordan. Multiple Non-redundant Spectral Clustering Views. In ICML '10, p831-838, 2010.
    • ICML , vol.10 , Issue.2010 , pp. 831-838
    • Niu, D.1    Dy, J.G.2    Jordan, M.I.3
  • 50
    • 0027637863 scopus 로고
    • What ears do for bats: A comparative study of pinna sound pressure transformation in chiroptera
    • M. K. Obrist, M. B. Fenton, J. L. Eger, and P. A. Schlegel. What Ears do for Bats: a Comparative Study of Pinna Sound Pressure Transformation in Chiroptera. J Exp Biol, 180:119-152, 1993.
    • (1993) J Exp Biol , vol.180 , pp. 119-152
    • Obrist, M.K.1    Fenton, M.B.2    Eger, J.L.3    Schlegel, P.A.4
  • 52
    • 70350663111 scopus 로고    scopus 로고
    • A principled and flexible framework for finding alternative clusterings
    • Z. Qi and I. Davidson. A Principled and Flexible Framework for Finding Alternative Clusterings. In KDD '09, p717-726, 2009.
    • (2009) KDD , vol.9 , pp. 717-726
    • Qi, Z.1    Davidson, I.2
  • 53
    • 33846536847 scopus 로고    scopus 로고
    • Echolocation and passive listening by foraging mouse-eared bats Myotis myotis and M. blythii
    • DOI 10.1242/jeb.02644
    • D. Russo, G. Jones, and R. Arlettaz. Echolocation and Passive Listening by Foraging Mouse-eared Bats Myotis myotis and M. blythii. J Exp Biol, 210(1):166-176, 2007. (Pubitemid 46160841)
    • (2007) Journal of Experimental Biology , vol.210 , Issue.1 , pp. 166-176
    • Russo, D.1    Jones, G.2    Arlettaz, R.3
  • 55
    • 70350657029 scopus 로고    scopus 로고
    • Visual cluster analysis of trajectory data with interactive kohonen maps
    • T. Schreck, J. Bernard, T. Tekusova, and J. Kohlhammer. Visual Cluster Analysis of Trajectory Data with Interactive Kohonen Maps. In VAST '08, p3 -10, 2008.
    • (2008) VAST , vol.8 , pp. 3-10
    • Schreck, T.1    Bernard, J.2    Tekusova, T.3    Kohlhammer, J.4
  • 56
    • 10244253968 scopus 로고    scopus 로고
    • Constrained clusters of gene expression profiles with pathological features
    • DOI 10.1093/bioinformatics/bth373
    • J. Sese, Y. Kurokawa, M. Monden, K. Kato, and S. Morishita. Con- strained Clusters of Gene Expression Profiles with Pathological Features. Bioinformatics, 20(17):3137 - 3145, 2004. (Pubitemid 39619203)
    • (2004) Bioinformatics , vol.20 , Issue.17 , pp. 3137-3145
    • Sese, J.1    Kurokawa, Y.2    Monden, M.3    Kato, K.4    Morishita, S.5
  • 57
    • 84945247175 scopus 로고    scopus 로고
    • Discriminative clustering: Opti- mal contingency tables by learning metrics
    • J. Sinkkonen, S. Kaski, and J. Nikkila. Discriminative Clustering: Opti- mal Contingency Tables by Learning Metrics. In ECML '02, p418- 430, 2002.
    • (2002) ECML , vol.2 , pp. 418-430
    • Sinkkonen, J.1    Kaski, S.2    Nikkila, J.3
  • 59
    • 0041965980 scopus 로고    scopus 로고
    • Cluster ensembles - A knowledge reuse frame- work for combining multiple partitions
    • A. Strehl and J. Ghosh. Cluster Ensembles - a Knowledge Reuse Frame- work for Combining Multiple Partitions. JMLR, 3:583-617, 2003.
    • (2003) JMLR , vol.3 , pp. 583-617
    • Strehl, A.1    Ghosh, J.2
  • 60
    • 0001898293 scopus 로고    scopus 로고
    • Clustering with Instance-level Constraints
    • K.Wagstaff and C. Cardie. Clustering with Instance-level Constraints. In ICML '00, p1103-1110, 2000.
    • (2000) ICML , vol.0 , pp. 1103-1110
    • Wagstaff, K.1    Cardie, C.2
  • 61
    • 0042377235 scopus 로고    scopus 로고
    • Constrained k-means clustering with background knowledge
    • K. Wagstaff, C. Cardie, S. Rogers, and S. Schrodl. Constrained K-means Clustering with Background Knowledge. In ICML '01, p577-584, 2001.
    • (2001) ICML , vol.1 , pp. 577-584
    • Wagstaff, K.1    Cardie, C.2    Rogers, S.3    Schrodl, S.4
  • 62
    • 77956209057 scopus 로고    scopus 로고
    • Flexible constrained spectral clustering
    • X. Wang and I. Davidson. Flexible Constrained Spectral Clustering. In KDD '10, p563-572, 2010.
    • KDD , vol.10 , Issue.2010 , pp. 563-572
    • Wang, X.1    Davidson, I.2
  • 63
    • 0035999974 scopus 로고    scopus 로고
    • Clustering gene expression data using a graph-theoretic approach: An application of minimum spanning trees
    • Y. Xu and V. O. an Dong Xu. Clustering Gene Expression Data using a Graph-theoretic Approach: an Application of Minimum Spanning Trees. Bioinformatics, 18(4):536-545, 2002. (Pubitemid 34521043)
    • (2002) Bioinformatics , vol.18 , Issue.4 , pp. 536-545
    • Xu, Y.1    Olman, V.2    Xu, D.3
  • 64
    • 13444252181 scopus 로고    scopus 로고
    • An adaptive meta- clustering approach: Combining the information from different clus- tering results
    • Y. Zeng, J. Tang, J. Garcia-Frias, and G. R. Gao. An Adaptive Meta- Clustering Approach: Combining the Information from Different Clus- tering Results. In CSB '02, p276-287, 2002.
    • (2002) CSB , vol.2 , pp. 276-287
    • Zeng, Y.1    Tang, J.2    Garcia-Frias, J.3    Gao, G.R.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.