메뉴 건너뛰기




Volumn 24, Issue 2, 2006, Pages 245-294

iVIBRATE: Interactive visualization-based framework for clustering large datasets

Author keywords

Algorithms; Design; Human Factors; Reliability

Indexed keywords

CLUSTERING; HUMAN FACTOR; INTERACTIVE VISUALIZATION; SENSING TECHNOLOGY;

EID: 33745475658     PISSN: 10468188     EISSN: 10468188     Source Type: Journal    
DOI: 10.1145/1148020.1148024     Document Type: Article
Times cited : (46)

References (58)
  • 2
    • 0000835612 scopus 로고
    • The grand tour: A tool for viewing multidimensional
    • ASIMOV, D. 1985. The grand tour: A tool for viewing multidimensional. SIAM J. Sci. Statistical Comput. 6, 1, 128-143.
    • (1985) SIAM J. Sci. Statistical Comput. , vol.6 , Issue.1 , pp. 128-143
    • Asimov, D.1
  • 7
    • 84996178668 scopus 로고    scopus 로고
    • VISTA: Validating and refining clusters via visualization
    • CHEN, K. AND LIU, L. 2004b. VISTA: Validating and refining clusters via visualization. Inf. Visualization 3, 4, 257-270.
    • (2004) Inf. Visualization , vol.3 , Issue.4 , pp. 257-270
    • Chen, K.1    Liu, L.2
  • 14
    • 0018655613 scopus 로고
    • Validity studies in clustering methodologies
    • DUBES, R. C. AND JAIN, A. K. 1979. Validity studies in clustering methodologies. Pattern Recogn. Lett., 235-254.
    • (1979) Pattern Recogn. Lett. , pp. 235-254
    • Dubes, R.C.1    Jain, A.K.2
  • 16
    • 84976803260 scopus 로고
    • FastMap: A fast algorithm for indexing, data-mining and visualization of traditional and multimedia datasets
    • FALOUTSOS, C. AND LIN, K.-I. D. 1995. FastMap: A fast algorithm for indexing, data-mining and visualization of traditional and multimedia datasets. In Proceedings of the ACM SIGMOD Conference, 163-174.
    • (1995) Proceedings of the ACM SIGMOD Conference , pp. 163-174
    • Faloutsos, C.1    Lin, K.-I.D.2
  • 17
    • 84945709355 scopus 로고
    • An algorithm for finding best matches in logarithmic expected time
    • FREIDMAN, J. H., BENTLEY, J. L., AND FINKEL, R. A. 1977. An algorithm for finding best matches in logarithmic expected time. ACM Trans. Math. Softw. 3, 3, 209-226.
    • (1977) ACM Trans. Math. Softw. , vol.3 , Issue.3 , pp. 209-226
    • Freidman, J.H.1    Bentley, J.L.2    Finkel, R.A.3
  • 21
    • 0034228041 scopus 로고    scopus 로고
    • ROCK: A robust clustering algorithm for categorical attributes
    • GUHA, S., RASTOGI, R., AND SHIM, K. 2000. ROCK: A robust clustering algorithm for categorical attributes. Inf. Syst. 25, 5, 345-366.
    • (2000) Inf. Syst. , vol.25 , Issue.5 , pp. 345-366
    • Guha, S.1    Rastogi, R.2    Shim, K.3
  • 22
  • 23
    • 85140527321 scopus 로고    scopus 로고
    • An efficient approach to clustering in large multimedia databases with noise
    • HINNEBURG, A. AND KEIM, D. A. 1998. An efficient approach to clustering in large multimedia databases with noise. In Proceedings of the ACM SIGKDD Conference, 58-65.
    • (1998) Proceedings of the ACM SIGKDD Conference , pp. 58-65
    • Hinneburg, A.1    Keim, D.A.2
  • 28
    • 84893405732 scopus 로고    scopus 로고
    • Data clustering: A review
    • JAIN, A. K. AND DUBES, R. C. 1999. Data clustering: A review. ACM Comput. Surv. 31, 264-323.
    • (1999) ACM Comput. Surv. , vol.31 , pp. 264-323
    • Jain, A.K.1    Dubes, R.C.2
  • 29
    • 0035788895 scopus 로고    scopus 로고
    • Visualizing multidimensional clusters, trends, and outliers using star coordinates
    • KANDOGAN, E. 2001. Visualizing multidimensional clusters, trends, and outliers using star coordinates. In Proceedings of the ACM SIGKDD Conference, 107-116.
    • (2001) Proceedings of the ACM SIGKDD Conference , pp. 107-116
    • Kandogan, E.1
  • 30
    • 0032686723 scopus 로고    scopus 로고
    • Chameleon: Hierarchical clustering using dynamic modeling
    • KARYPIS, G., HAN, E.-H. S., AND KUMAR, V. 1999. Chameleon: Hierarchical clustering using dynamic modeling. IEEE Comput. 32, 8, 68-75.
    • (1999) IEEE Comput. , vol.32 , Issue.8 , pp. 68-75
    • Karypis, G.1    Han, E.-H.S.2    Kumar, V.3
  • 31
    • 0042262063 scopus 로고    scopus 로고
    • Visual exploration of large data sets
    • KEIM, D. 2001. Visual exploration of large data sets. ACM Commun. 44, 8, 38-44.
    • (2001) ACM Commun. , vol.44 , Issue.8 , pp. 38-44
    • Keim, D.1
  • 32
    • 0242592090 scopus 로고
    • Why a diagram is (sometimes) worth ten thousand words
    • LARKIN, J. AND SIMON, H. 1987. Why a diagram is (sometimes) worth ten thousand words. Cognitive Sci. 11, 65-99.
    • (1987) Cognitive Sci. , vol.11 , pp. 65-99
    • Larkin, J.1    Simon, H.2
  • 34
    • 0036649291 scopus 로고    scopus 로고
    • Clustering for approximate similarity search in high-dimensional spaces
    • LI, C., CHANO, E., GARCIA-MOLINA, H., AND WIEDERHOLD, G. 2002. Clustering for approximate similarity search in high-dimensional spaces. IEEE Trans. Knowledge Data Eng. 14, 4, 792-808.
    • (2002) IEEE Trans. Knowledge Data Eng. , vol.14 , Issue.4 , pp. 792-808
    • Li, C.1    Chano, E.2    Garcia-Molina, H.3    Wiederhold, G.4
  • 35
    • 0020915025 scopus 로고
    • Using the GLYPH concept to create user-definable display formats
    • LITTLEFIELD, R. J. 1983. Using the GLYPH concept to create user-definable display formats. National Comput. Graphics Association, 697-706.
    • (1983) National Comput. Graphics Association , pp. 697-706
    • Littlefield, R.J.1
  • 37
    • 0242698067 scopus 로고    scopus 로고
    • The learning-curve sampling method applied to model-based clustering
    • MEEK, C., THIESSON, B., AND HECKERMAN, D. 2002. The learning-curve sampling method applied to model-based clustering. J. Mach. Learn. Research 2, 397-418.
    • (2002) J. Mach. Learn. Research , vol.2 , pp. 397-418
    • Meek, C.1    Thiesson, B.2    Heckerman, D.3
  • 38
    • 0038718854 scopus 로고    scopus 로고
    • The structure and function of complex networks
    • NEWMAN, M. E. 2003. The structure and function of complex networks. SIAM Rev., 167-256.
    • (2003) SIAM Rev. , pp. 167-256
    • Newman, M.E.1
  • 39
    • 0040438433 scopus 로고    scopus 로고
    • Density biased sampling: An improved method for data mining and clustering
    • PALMER, C. AND FALOUTSOS, C. 2000. Density biased sampling: An improved method for data mining and clustering. In Proceedings of the ACM SIGMOD Conference, 82-92.
    • (2000) Proceedings of the ACM SIGMOD Conference , pp. 82-92
    • Palmer, C.1    Faloutsos, C.2
  • 40
    • 25844491690 scopus 로고    scopus 로고
    • A distributed approach to node clustering in decentralized peer-to-peer networks
    • Sept.
    • RAMASWAMY, L., GEDIK, B., AND LIU, L. Sept. 2005. A distributed approach to node clustering in decentralized peer-to-peer networks. IEEE Trans. Parallel Distrib. Syst. 16, 9, 1-16.
    • (2005) IEEE Trans. Parallel Distrib. Syst. , vol.16 , Issue.9 , pp. 1-16
    • Ramaswamy, L.1    Gedik, B.2    Liu, L.3
  • 44
    • 0036645183 scopus 로고    scopus 로고
    • Interactively exploring hierarchical clustering results
    • SEO, J. AND SHNEIDERMAN, B. 2002. Interactively exploring hierarchical clustering results. IEEE Comput. 35, 7, 80-86.
    • (2002) IEEE Comput. , vol.35 , Issue.7 , pp. 80-86
    • Seo, J.1    Shneiderman, B.2
  • 47
    • 84998044282 scopus 로고    scopus 로고
    • Inventing discovery tools: Combining information visualization with data mining
    • SHNEIDERMAN, B. 2002. Inventing discovery tools: Combining information visualization with data mining. Inf. Visualization 1, 5-12.
    • (2002) Inf. Visualization , vol.1 , pp. 5-12
    • Shneiderman, B.1
  • 50
    • 0022026217 scopus 로고
    • Random sampling with a reservoir
    • VITTER, J. S. 1985. Random sampling with a reservoir. ACM Trans. Math. Softw. 11, 1, 37-57.
    • (1985) ACM Trans. Math. Softw. , vol.11 , Issue.1 , pp. 37-57
    • Vitter, J.S.1
  • 51
    • 0028699378 scopus 로고
    • Xmdvtool: Integrating multiple methods for visualizing multivariate data
    • WARD, M. 1994. Xmdvtool: Integrating multiple methods for visualizing multivariate data. IEEE Visualization, 326-333.
    • (1994) IEEE Visualization , pp. 326-333
    • Ward, M.1
  • 52
    • 3543147086 scopus 로고
    • Recent trends in hierarchic document clustering: A critical review
    • WILLETT, P. 1988. Recent trends in hierarchic document clustering: A critical review. Inf. Process. Manage. 24, 5, 577-597.
    • (1988) Inf. Process. Manage. , vol.24 , Issue.5 , pp. 577-597
    • Willett, P.1
  • 54
    • 0037399668 scopus 로고    scopus 로고
    • Interactive hierarchical displays: A general framework for visualization and exploration of large multivariate datasets
    • YANG, J., WARD, M. O., AND RUNDENSTEINER, E. A. 2002. Interactive hierarchical displays: A general framework for visualization and exploration of large multivariate datasets. Comput. Graphics J. 27, 265-283.
    • (2002) Comput. Graphics J. , vol.27 , pp. 265-283
    • Yang, J.1    Ward, M.O.2    Rundensteiner, E.A.3
  • 55
    • 0034593062 scopus 로고    scopus 로고
    • Interactive exploration of very large relational datasets through 3D dynamic projections
    • YANG, L. 2000. Interactive exploration of very large relational datasets through 3D dynamic projections. In Proceedings of the ACM SIGKDD Conference, 236-243.
    • (2000) Proceedings of the ACM SIGKDD Conference , pp. 236-243
    • Yang, L.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.