메뉴 건너뛰기




Volumn , Issue , 2012, Pages

Guided discovery of interesting relationships between time series clusters and metadata properties

Author keywords

Guided Data Exploration; Information Visualization; Interestingness Measures; Scientific Research Data; Visual Analytics; Visual Cluster Analysis

Indexed keywords

DATA EXPLORATION; INFORMATION VISUALIZATION; INTERESTINGNESS MEASURES; SCIENTIFIC RESEARCHES; VISUAL ANALYTICS;

EID: 84867473363     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1145/2362456.2362485     Document Type: Conference Paper
Times cited : (17)

References (27)
  • 4
    • 80955157762 scopus 로고    scopus 로고
    • Dicon: Interactive visual analysis of multidimensional clusters
    • N. Cao, D. Gotz, J. Sun, and H. Qu. Dicon: Interactive visual analysis of multidimensional clusters. IEEE Trans. Vis. Comput. Graph., 17(12):2581-2590, 2011.
    • (2011) IEEE Trans. Vis. Comput. Graph. , vol.17 , Issue.12 , pp. 2581-2590
    • Cao, N.1    Gotz, D.2    Sun, J.3    Qu, H.4
  • 8
    • 33749319347 scopus 로고    scopus 로고
    • Interestingness measures for data mining: A survey
    • L. Geng and H. J. Hamilton. Interestingness measures for data mining: A survey. Comput. Surv., 38, 2006.
    • Comput. Surv. , vol.38 , pp. 2006
    • Geng, L.1    Hamilton, H.J.2
  • 11
    • 72849114292 scopus 로고    scopus 로고
    • Model space visualization for multivariate linear trend discovery
    • Z. Guo, M. O. Ward, and E. A. Rundensteiner. Model space visualization for multivariate linear trend discovery. IEEE Symposium on VAST, pages 75-82, 2009.
    • (2009) IEEE Symposium on VAST , pp. 75-82
    • Guo, Z.1    Ward, M.O.2    Rundensteiner, E.A.3
  • 14
    • 85040241330 scopus 로고    scopus 로고
    • Dimensionality reduction for fast similarity search in large time series databases
    • E. Keogh, K. Chakrabarti, M. Pazzani, and S. Mehrotra. Dimensionality reduction for fast similarity search in large time series databases. Knowledge and Information Systems, 3(3):263-286, 2001.
    • (2001) Knowledge and Information Systems , vol.3 , Issue.3 , pp. 263-286
    • Keogh, E.1    Chakrabarti, K.2    Pazzani, M.3    Mehrotra, S.4
  • 15
    • 0042711018 scopus 로고    scopus 로고
    • On the need for time series data mining benchmarks: A survey and empirical demonstration
    • E. Keogh and S. Kasetty. On the need for time series data mining benchmarks: a survey and empirical demonstration. Data Mining and Knowledge Discovery, 7(4):349-371, 2003.
    • (2003) Data Mining and Knowledge Discovery , vol.7 , Issue.4 , pp. 349-371
    • Keogh, E.1    Kasetty, S.2
  • 17
    • 24044470614 scopus 로고    scopus 로고
    • Clustering of time series data - A survey
    • T. W. Liao. Clustering of time series data - a survey. Pattern Recognition, 38:1857-1874, 2005.
    • (2005) Pattern Recognition , vol.38 , pp. 1857-1874
    • Liao, T.W.1
  • 20
    • 77955728762 scopus 로고    scopus 로고
    • Hypermoval: Interactive visual validation of regression models for real-time simulation
    • H. Piringer, W. Berger, and J. Krasser. Hypermoval: Interactive visual validation of regression models for real-time simulation. Comput. Graph. Forum, 2010.
    • (2010) Comput. Graph. Forum
    • Piringer, H.1    Berger, W.2    Krasser, J.3
  • 22
    • 79960533716 scopus 로고    scopus 로고
    • Retrieval and exploratory search in multivariate research data repositories using regressional features
    • NY, USA ACM
    • M. Scherer, J. Bernard, and T. Schreck. Retrieval and exploratory search in multivariate research data repositories using regressional features. In Proceedings of the int. ACM/IEEE JCDL, pages 363-372, NY, USA, 2011. ACM.
    • (2011) Proceedings of the Int. ACM/IEEE JCDL , pp. 363-372
    • Scherer, M.1    Bernard, J.2    Schreck, T.3
  • 24
    • 33344464667 scopus 로고
    • Measurement of diversity
    • E. Simpson. Measurement of diversity. Nature, 163(4148):688-688, 1949.
    • (1949) Nature , vol.163 , Issue.4148 , pp. 688-688
    • Simpson, E.1
  • 25
    • 68549110238 scopus 로고    scopus 로고
    • Selecting good views of high-dimensional data using class consistency
    • M. Sips, B. Neubert, J. Lewis, and P. Hanrahan. Selecting good views of high-dimensional data using class consistency. Computer Graphics Forum, 28(3):831-838, 2009.
    • (2009) Computer Graphics Forum , vol.28 , Issue.3 , pp. 831-838
    • Sips, M.1    Neubert, B.2    Lewis, J.3    Hanrahan, P.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.