메뉴 건너뛰기




Volumn , Issue , 2012, Pages 123-130

Review quality aware collaborative filtering

Author keywords

Collaborative filtering; Probabilistic matrix factorization; Recommender systems; Review quality

Indexed keywords

BENCHMARK DATA; COLLABORATIVE FILTERING; EXPERIMENTAL EVALUATION; MATHEMATICAL FORMULATION; MATRIX FACTORIZATIONS; PRODUCT REVIEWS; REVIEW QUALITY; TWO-PRODUCT;

EID: 84867374264     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1145/2365952.2365978     Document Type: Conference Paper
Times cited : (50)

References (30)
  • 1
    • 20844435854 scopus 로고    scopus 로고
    • Toward the next generation of recommender systems: A survey of the state-of-the-art and possible extensions
    • G. Adomavicius and A. Tuzhilin. Toward the next generation of recommender systems: A survey of the state-of-the-art and possible extensions. IEEE Transactions on Knowledge and Data Engineering, 2005.
    • (2005) IEEE Transactions on Knowledge and Data Engineering
    • Adomavicius, G.1    Tuzhilin, A.2
  • 3
    • 0000746402 scopus 로고    scopus 로고
    • Recommendation as classification: Using social and content-based information in recommendation
    • C. Basu, H. Hirsh, and W. Cohen. Recommendation as classification: using social and content-based information in recommendation. AAAI, 1998.
    • (1998) AAAI
    • Basu, C.1    Hirsh, H.2    Cohen, W.3
  • 4
    • 85161981998 scopus 로고    scopus 로고
    • Supervised topic models
    • D. Blei and J. McAuliffe. Supervised topic models. NIPS, 2008.
    • (2008) NIPS
    • Blei, D.1    McAuliffe, J.2
  • 5
    • 0141607824 scopus 로고    scopus 로고
    • Latent dirichlet allocation
    • D. M. Blei, A. Ng, and M. Jordan. Latent dirichlet allocation. JMLR, 2003.
    • (2003) JMLR
    • Blei, D.M.1    Ng, A.2    Jordan, M.3
  • 6
    • 84860524227 scopus 로고    scopus 로고
    • Biographies, bollywood, boomboxes and blenders: Domain adaptation for sentiment classification
    • J. Blitzer, M. Dredze, and F. Pereira. Biographies, bollywood, boomboxes and blenders: Domain adaptation for sentiment classification. ACL, 2007.
    • (2007) ACL
    • Blitzer, J.1    Dredze, M.2    Pereira, F.3
  • 7
    • 84865658243 scopus 로고    scopus 로고
    • How opinions are received by online communities: A case study on amazon.com helpfulness votes
    • C. Danescu-Niculescu-Mizil, G. Kossinets, J. Kleinberg, and L. Lee. How opinions are received by online communities: a case study on amazon.com helpfulness votes. WWW, 2009.
    • (2009) WWW
    • Danescu-Niculescu-mizil, C.1    Kossinets, G.2    Kleinberg, J.3    Lee, L.4
  • 8
    • 52449111462 scopus 로고    scopus 로고
    • Designing novel review ranking systems: Predicting the usefulness and impact of reviews
    • A. Ghose and P. G. Ipeirotis. Designing novel review ranking systems: predicting the usefulness and impact of reviews. ICEC, 2007.
    • (2007) ICEC
    • Ghose, A.1    Ipeirotis, P.G.2
  • 10
    • 67049164166 scopus 로고    scopus 로고
    • Collaborative filtering for implicit feedback datasets
    • Y. Hu, Y. Koren, and C. Volinsky. Collaborative filtering for implicit feedback datasets. ICDM, 2008.
    • (2008) ICDM
    • Hu, Y.1    Koren, Y.2    Volinsky, C.3
  • 11
    • 42549096144 scopus 로고    scopus 로고
    • Opinion spam and analysis
    • N. Jindal and B. Liu. Opinion spam and analysis. WSDM, 2008.
    • (2008) WSDM
    • Jindal, N.1    Liu, B.2
  • 12
    • 0002714543 scopus 로고    scopus 로고
    • Making large-scale support vector machine learning practical
    • T. Joachims. Making large-scale support vector machine learning practical. Advances in kernel methods, 1999.
    • (1999) Advances in Kernel Methods
    • Joachims, T.1
  • 14
    • 85008044987 scopus 로고    scopus 로고
    • Matrix factorization techniques for recommender systems
    • Y. Koren, R. Bell, and C. Volinsky. Matrix factorization techniques for recommender systems. IEEE Computer, 2009.
    • (2009) IEEE Computer
    • Koren, Y.1    Bell, R.2    Volinsky, C.3
  • 15
    • 45449086600 scopus 로고    scopus 로고
    • Low-quality product review detection in opinion summarization
    • J. Liu, Y. Cao, C. Y. Lin, Y. Huang, and M. Zhou. Low-quality product review detection in opinion summarization. EMNLP-CoNLL, 2007.
    • (2007) EMNLP-CoNLL
    • Liu, J.1    Cao, Y.2    Lin, C.Y.3    Huang, Y.4    Zhou, M.5
  • 16
    • 67049169370 scopus 로고    scopus 로고
    • Modeling and predicting the helpfulness of online reviews
    • Y. Liu, X. Huang, A. An, and X. Yu. Modeling and predicting the helpfulness of online reviews. ICDM, 2008.
    • (2008) ICDM
    • Liu, Y.1    Huang, X.2    An, A.3    Yu, X.4
  • 18
    • 33749244569 scopus 로고    scopus 로고
    • Content-boosted collaborative filtering for improved recommendations
    • P. Melville, R. J. Mooney, and R. Nagarajan. Content-boosted collaborative filtering for improved recommendations. AAAI, 2002.
    • (2002) AAAI
    • Melville, P.1    Mooney, R.J.2    Nagarajan, R.3
  • 21
    • 72249087537 scopus 로고    scopus 로고
    • Learning to recommend helpful hotel reviews
    • M. P. O'Mahony and B. Smyth. Learning to recommend helpful hotel reviews. RecSys, 2009.
    • (2009) RecSys
    • O'Mahony, M.P.1    Smyth, B.2
  • 22
    • 83255191401 scopus 로고    scopus 로고
    • Finding deceptive opinion spam by any stretch of the imagination
    • M. Ott, Y. Choi, C. Cardie, and J. T. Hancock. Finding deceptive opinion spam by any stretch of the imagination. ACL-HLT, 2011.
    • (2011) ACL-HLT
    • Ott, M.1    Choi, Y.2    Cardie, C.3    Hancock, J.T.4
  • 24
    • 85030174634 scopus 로고
    • Grouplens: An open architecture for collaborative filtering of netnews
    • P. Resnick, N. Iacovou, M. Suchak, P. Bergstrom, and J. Riedl. Grouplens: an open architecture for collaborative filtering of netnews. CSCW, 1994.
    • (1994) CSCW
    • Resnick, P.1    Iacovou, N.2    Suchak, M.3    Bergstrom, P.4    Riedl, J.5
  • 25
    • 85161989354 scopus 로고    scopus 로고
    • Probabilistic matrix factorization
    • R. Salakhutdinov. Probabilistic matrix factorization. NIPS, 2008.
    • (2008) NIPS
    • Salakhutdinov, R.1
  • 26
    • 56449131205 scopus 로고    scopus 로고
    • Bayesian probabilistic matrix factorization using markov chain monte carlo
    • R. Salakhutdinov and A. Mnih. Bayesian probabilistic matrix factorization using markov chain monte carlo. ICML, 2008.
    • (2008) ICML
    • Salakhutdinov, R.1    Mnih, A.2
  • 28
    • 79956023811 scopus 로고    scopus 로고
    • Distortion as a validation criterion in the identification of suspicious reviews
    • G. Wu, D. Greene, B. Smyth, and P. Cunningham. Distortion as a validation criterion in the identification of suspicious reviews. SOMA, 2010.
    • (2010) SOMA
    • Wu, G.1    Greene, D.2    Smyth, B.3    Cunningham, P.4
  • 29
    • 82555183087 scopus 로고    scopus 로고
    • Semi-sad: Applying semi-supervised learning to shilling attack detection
    • Z. Wu, J. Cao, B. Mao, and Y. Wang. Semi-sad: applying semi-supervised learning to shilling attack detection. RecSys, 2011.
    • (2011) RecSys
    • Wu, Z.1    Cao, J.2    Mao, B.3    Wang, Y.4
  • 30
    • 70350675904 scopus 로고    scopus 로고
    • Large-scale parallel collaborative filtering for the netflix prize
    • Y. Zhou, D. Wilkinson, R. Schreiber, and R. Pan. Large-scale parallel collaborative filtering for the netflix prize. AAIM, 2008.
    • (2008) AAIM
    • Zhou, Y.1    Wilkinson, D.2    Schreiber, R.3    Pan, R.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.