메뉴 건너뛰기




Volumn , Issue , 2012, Pages 249-252

Discovering latent factors from movies genres for enhanced recommendation

Author keywords

Collaborative recommender systems; Latent semantic analysis; User profiling; Users similarity

Indexed keywords

COLLABORATIVE FILTERING; COLLABORATIVE RECOMMENDER SYSTEMS; COMPUTATIONAL RESOURCES; DATA SETS; LATENT FACTOR; LATENT SEMANTIC ANALYSIS; MATRIX FACTORIZATIONS; OVERFITTING; RECOMMENDER ALGORITHMS; USER PROFILING; USERS SIMILARITY;

EID: 84867366970     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1145/2365952.2366006     Document Type: Conference Paper
Times cited : (28)

References (14)
  • 1
    • 20844435854 scopus 로고    scopus 로고
    • Toward the next generation of recommender systems: A survey of the state-of-the-art and possible extensions
    • DOI 10.1109/TKDE.2005.99
    • G. Adomavicius and A. Tuzhilin. Toward the Next Generation of Recommender Systems: A Survey of the State-of-the-Art and Possible Extensions. IEEE Transactions on Knowledge and Data Engineering, 17(6):734-749, 2005. (Pubitemid 40860454)
    • (2005) IEEE Transactions on Knowledge and Data Engineering , vol.17 , Issue.6 , pp. 734-749
    • Adomavicius, G.1    Tuzhilin, A.2
  • 2
    • 36849079891 scopus 로고    scopus 로고
    • Modeling relationships at multiple scales to improve accuracy of large recommender systems
    • DOI 10.1145/1281192.1281206, KDD-2007: Proceedings of the Thirteenth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining
    • R. Bell, Y. Koren, and C. Volinsky. Modeling relationships at multiple scales to improve accuracy of large recommender systems. In Proceedings of the 13th ACM SIGKDD international conference on Knowledge discovery and data mining, KDD '07, pages 95-104, New York, NY, USA, 2007. ACM. (Pubitemid 350229196)
    • (2007) Proceedings of the ACM SIGKDD International Conference on Knowledge Discovery and Data Mining , pp. 95-104
    • Bell, R.1    Koren, Y.2    Volinsky, C.3
  • 6
    • 77955644905 scopus 로고    scopus 로고
    • Factor in the neighbors: Scalable and accurate collaborative filtering
    • Y. Koren. Factor in the neighbors: Scalable and accurate collaborative filtering. ACM Transactions on Knowledge Discovery from Data, 4(1), 2010.
    • (2010) ACM Transactions on Knowledge Discovery from Data , vol.4 , Issue.1
    • Koren, Y.1
  • 7
    • 85008044987 scopus 로고    scopus 로고
    • Matrix factorization techniques for recommender systems
    • Y. Koren, R. Bell, and C. Volinsky. Matrix Factorization Techniques for Recommender Systems. IEEE Computer, 42(8):30-37, 2009.
    • (2009) IEEE Computer , vol.42 , Issue.8 , pp. 30-37
    • Koren, Y.1    Bell, R.2    Volinsky, C.3
  • 9
    • 84863593776 scopus 로고    scopus 로고
    • Peersommender: A peer-level annotation-based approach for multimedia recommendation
    • M. G. Manzato and R. Goularte. Peersommender: A Peer-Level Annotation-Based Approach for Multimedia Recommendation. Journal of Information and Data Management, 1(2):277-292, 2010.
    • (2010) Journal of Information and Data Management , vol.1 , Issue.2 , pp. 277-292
    • Manzato, M.G.1    Goularte, R.2
  • 11
    • 57949113756 scopus 로고    scopus 로고
    • Improving regularized singular value decomposition for collaborative filtering
    • A. Paterek. Improving regularized singular value decomposition for collaborative filtering. In KDD Cup Workshop 2007, pages 39-42, 2007.
    • (2007) KDD Cup Workshop 2007 , pp. 39-42
    • Paterek, A.1
  • 12
    • 63449105336 scopus 로고    scopus 로고
    • Online-updating regularized kernel matrix factorization models for large-scale recommender systems
    • New York, NY, USA, ACM
    • S. Rendle and S.-T. Lars. Online-updating regularized kernel matrix factorization models for large-scale recommender systems. In Proceedings of the 2008 ACM conference on Recommender systems, RecSys '08, pages 251-258, New York, NY, USA, 2008. ACM.
    • (2008) Proceedings of the 2008 ACM Conference on Recommender Systems, RecSys '08 , pp. 251-258
    • Rendle, S.1    Lars, S.-T.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.