-
1
-
-
20844435854
-
Toward the next generation of recommender systems: A survey of the state-of-the-art and possible extensions
-
DOI 10.1109/TKDE.2005.99
-
G. Adomavicius and A. Tuzhilin. Toward the Next Generation of Recommender Systems: A Survey of the State-of-the-Art and Possible Extensions. IEEE Transactions on Knowledge and Data Engineering, 17(6):734-749, 2005. (Pubitemid 40860454)
-
(2005)
IEEE Transactions on Knowledge and Data Engineering
, vol.17
, Issue.6
, pp. 734-749
-
-
Adomavicius, G.1
Tuzhilin, A.2
-
2
-
-
36849079891
-
Modeling relationships at multiple scales to improve accuracy of large recommender systems
-
DOI 10.1145/1281192.1281206, KDD-2007: Proceedings of the Thirteenth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining
-
R. Bell, Y. Koren, and C. Volinsky. Modeling relationships at multiple scales to improve accuracy of large recommender systems. In Proceedings of the 13th ACM SIGKDD international conference on Knowledge discovery and data mining, KDD '07, pages 95-104, New York, NY, USA, 2007. ACM. (Pubitemid 350229196)
-
(2007)
Proceedings of the ACM SIGKDD International Conference on Knowledge Discovery and Data Mining
, pp. 95-104
-
-
Bell, R.1
Koren, Y.2
Volinsky, C.3
-
3
-
-
80052405657
-
Collaborative filtering recommender systems
-
M. D. Ekstrand, J. Riedl, and J. A. Konstan. Collaborative filtering recommender systems. Foundations and Trends in Human-Computer Interaction, 4(2):175-243, 2011.
-
(2011)
Foundations and Trends in Human-Computer Interaction
, vol.4
, Issue.2
, pp. 175-243
-
-
Ekstrand, M.D.1
Riedl, J.2
Konstan, J.A.3
-
4
-
-
79951727814
-
Learning attribute-to-feature mappings for cold-start recommendations
-
dec
-
Z. Gantner, L. Drumond, C. Freudenthaler, S. Rendle, and L. Schmidt-Thieme. Learning attribute-to-feature mappings for cold-start recommendations. In 2010 IEEE 10th International Conference on Data Mining (ICDM), pages 176-185, dec. 2010.
-
(2010)
2010 IEEE 10th International Conference on Data Mining (ICDM)
, pp. 176-185
-
-
Gantner, Z.1
Drumond, L.2
Freudenthaler, C.3
Rendle, S.4
Schmidt-Thieme, L.5
-
5
-
-
80052668032
-
Large-scale matrix factorization with distributed stochastic gradient descent
-
New York, NY, USA, ACM
-
R. Gemulla, E. Nijkamp, P. J. Haas, and Y. Sismanis. Large-scale matrix factorization with distributed stochastic gradient descent. In Proceedings of the 17th ACM SIGKDD international conference on Knowledge discovery and data mining, KDD '11, pages 69-77, New York, NY, USA, 2011. ACM.
-
(2011)
Proceedings of the 17th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD '11
, pp. 69-77
-
-
Gemulla, R.1
Nijkamp, E.2
Haas, P.J.3
Sismanis, Y.4
-
6
-
-
77955644905
-
Factor in the neighbors: Scalable and accurate collaborative filtering
-
Y. Koren. Factor in the neighbors: Scalable and accurate collaborative filtering. ACM Transactions on Knowledge Discovery from Data, 4(1), 2010.
-
(2010)
ACM Transactions on Knowledge Discovery from Data
, vol.4
, Issue.1
-
-
Koren, Y.1
-
7
-
-
85008044987
-
Matrix factorization techniques for recommender systems
-
Y. Koren, R. Bell, and C. Volinsky. Matrix Factorization Techniques for Recommender Systems. IEEE Computer, 42(8):30-37, 2009.
-
(2009)
IEEE Computer
, vol.42
, Issue.8
, pp. 30-37
-
-
Koren, Y.1
Bell, R.2
Volinsky, C.3
-
9
-
-
84863593776
-
Peersommender: A peer-level annotation-based approach for multimedia recommendation
-
M. G. Manzato and R. Goularte. Peersommender: A Peer-Level Annotation-Based Approach for Multimedia Recommendation. Journal of Information and Data Management, 1(2):277-292, 2010.
-
(2010)
Journal of Information and Data Management
, vol.1
, Issue.2
, pp. 277-292
-
-
Manzato, M.G.1
Goularte, R.2
-
11
-
-
57949113756
-
Improving regularized singular value decomposition for collaborative filtering
-
A. Paterek. Improving regularized singular value decomposition for collaborative filtering. In KDD Cup Workshop 2007, pages 39-42, 2007.
-
(2007)
KDD Cup Workshop 2007
, pp. 39-42
-
-
Paterek, A.1
-
12
-
-
63449105336
-
Online-updating regularized kernel matrix factorization models for large-scale recommender systems
-
New York, NY, USA, ACM
-
S. Rendle and S.-T. Lars. Online-updating regularized kernel matrix factorization models for large-scale recommender systems. In Proceedings of the 2008 ACM conference on Recommender systems, RecSys '08, pages 251-258, New York, NY, USA, 2008. ACM.
-
(2008)
Proceedings of the 2008 ACM Conference on Recommender Systems, RecSys '08
, pp. 251-258
-
-
Rendle, S.1
Lars, S.-T.2
-
14
-
-
0013312710
-
Application of dimensionality reduction in recommender system - A case study
-
Boston, MA, USA
-
B. M. Sarwar, G. Karypis, J. A. Konstan, and J. T. Riedl. Application of Dimensionality Reduction in Recommender System - A Case Study. In Proceedings of ACM SIGKDD Conference on Knowledge Discovery in Databases, Boston, MA, USA, 2000.
-
(2000)
Proceedings of ACM SIGKDD Conference on Knowledge Discovery in Databases
-
-
Sarwar, B.M.1
Karypis, G.2
Konstan, J.A.3
Riedl, J.T.4
|