메뉴 건너뛰기




Volumn 28, Issue 4, 2012, Pages 569-574

Prediction of kernel density of corn using single-kernel near infrared spectroscopy

Author keywords

Corn hardness; Kernel density; NIRS; Partial least squares regression

Indexed keywords

ABSORBANCE SPECTRUM; BULK SAMPLES; COEFFICIENT OF DETERMINATION; COMMERCIAL INSTRUMENTS; CROSS VALIDATION; DENSITY VALUE; FOOD PROCESSORS; GAS PYCNOMETERS; HIGH DENSITY; KERNEL DENSITY; NIRS; OIL CONTENTS; PARTIAL LEAST SQUARES REGRESSION; POTENTIAL APPLICATIONS; PRE-TREATMENTS; PREDICTION EQUATIONS; PREDICTION MODEL; REFERENCE METHOD; STANDARD DEVIATION; STANDARD ERROR OF PREDICTION; STANDARD ERRORS; STARCH CONTENTS;

EID: 84867275099     PISSN: 08838542     EISSN: None     Source Type: Journal    
DOI: None     Document Type: Article
Times cited : (14)

References (24)
  • 1
    • 37549050859 scopus 로고    scopus 로고
    • The effect of moisture content on determining corn hardness from grinding time, grinding energy, and near-infrared spectroscopy
    • Armstrong, P. R., J. E. Lingenfelser, and L. McKinney. 2007. The effect of moisture content on determining corn hardness from grinding time, grinding energy, and near-infrared spectroscopy. Appl. Eng. in Agric. 23(6): 793-799.
    • (2007) Appl. Eng. in Agric. , vol.23 , Issue.6 , pp. 793-799
    • Armstrong, P.R.1    Lingenfelser, J.E.2    Mckinney, L.3
  • 2
    • 33751380409 scopus 로고    scopus 로고
    • Rapid single kernel NIR measurement of grain and oil-seed attributes
    • Armstrong, P. R. 2006. Rapid single kernel NIR measurement of grain and oil-seed attributes. Appl. Eng. in Agric. 22(5): 767-772.
    • (2006) Appl. Eng. in Agric. , vol.22 , Issue.5 , pp. 767-772
    • Armstrong, P.R.1
  • 4
    • 0002806892 scopus 로고
    • Measuring density and porosity for grain kernels using a gas pycnometer
    • Chang, C. S. 1988. Measuring density and porosity for grain kernels using a gas pycnometer. Cereal Chem. 65(1): 13-15.
    • (1988) Cereal Chem. , vol.65 , Issue.1 , pp. 13-15
    • Chang, C.S.1
  • 7
    • 70349600402 scopus 로고    scopus 로고
    • Automated single-kernel sorting to select for quality traits in wheat breeding lines
    • Dowell, F. E., E. B. Maghirang, and P. S. Baenziger. 2009. Automated single-kernel sorting to select for quality traits in wheat breeding lines. Cereal Chem. 86(5): 527-533.
    • (2009) Cereal Chem. , vol.86 , Issue.5 , pp. 527-533
    • Dowell, F.E.1    Maghirang, E.B.2    Baenziger, P.S.3
  • 8
    • 67649872851 scopus 로고    scopus 로고
    • Hardness methods for testing maize kernels
    • Fox, G., and M. Manley. 2009. Hardness methods for testing maize kernels. J. Agric. Food Chem. 57(13): 5647-5657.
    • (2009) J. Agric. Food Chem. , vol.57 , Issue.13 , pp. 5647-5657
    • Fox, G.1    Manley, M.2
  • 9
    • 33744935010 scopus 로고    scopus 로고
    • Determination of amino acid composition of soybeans (Glycine max) by near-infrared spectroscopy
    • Kovalenko, I. V., G. R. Rippke, and C. R. Hurburgh. 2006. Determination of amino acid composition of soybeans (Glycine max) by near-infrared spectroscopy. J. Agric. and Food Chem. 54(10): 3485-3491.
    • (2006) J. Agric. and Food Chem. , vol.54 , Issue.10 , pp. 3485-3491
    • Kovalenko, I.V.1    Rippke, G.R.2    Hurburgh, C.R.3
  • 10
    • 11144257839 scopus 로고    scopus 로고
    • Classification and prediction of maize hardness-associated properties using multivariate statistical analyses
    • Lee, K. M., T. Herrman, J. Lingenfelser, and D. S. Jackson. 2005. Classification and prediction of maize hardness-associated properties using multivariate statistical analyses. J. Cereal Sci. 41(1): 85-93.
    • (2005) J. Cereal Sci. , vol.41 , Issue.1 , pp. 85-93
    • Lee, K.M.1    Herrman, T.2    Lingenfelser, J.3    Jackson, D.S.4
  • 11
    • 0041969315 scopus 로고
    • Mechanical behavior of corn kernels: Development of a laboratory friability test that can predict milling behavior
    • Mestres, C., F. Matencio, and A. Louis-Alexandre. 1995. Mechanical behavior of corn kernels: Development of a laboratory friability test that can predict milling behavior. Cereal Chem. 72(6): 652-657.
    • (1995) Cereal Chem. , vol.72 , Issue.6 , pp. 652-657
    • Mestres, C.1    Matencio, F.2    Louis-Alexandre, A.3
  • 12
    • 41949136233 scopus 로고    scopus 로고
    • Relationships between kernel vitreousness and dry matter degradability for diverse corn germplasm: II. Ruminal and post-ruminal degradabilities
    • Ngonyamo-Majee, D., R. D. Shaver, J. G. Coors, D. Sapienza, and J. G. Lauer. 2008. Relationships between kernel vitreousness and dry matter degradability for diverse corn germplasm: II. Ruminal and post-ruminal degradabilities. Anim. Feed Sci. and Tech. 142(3-4): 259-274.
    • (2008) Anim. Feed Sci. and Tech. , vol.142 , Issue.3-4 , pp. 259-274
    • Ngonyamo-Majee, D.1    Shaver, R.D.2    Coors, J.G.3    Sapienza, D.4    Lauer, J.G.5
  • 13
    • 0035634833 scopus 로고    scopus 로고
    • Near infrared reflectance spectroscopy for online particle size analysis of powders and ground materials
    • Pasikatan, M. C., J. L. Steele, C. K. Spillman, and E. Haque. 2001. Near infrared reflectance spectroscopy for online particle size analysis of powders and ground materials. J. Near Infrared Spectrosc. 9: 153-164.
    • (2001) J. Near Infrared Spectrosc. , vol.9 , pp. 153-164
    • Pasikatan, M.C.1    Steele, J.L.2    Spillman, C.K.3    Haque, E.4
  • 14
    • 84867247932 scopus 로고    scopus 로고
    • Perten Instruments. Perten Instruments North America, Springfield
    • Perten Instruments. 2010. Personal communications. Perten Instruments North America, Springfield, I11.
    • (2010) Personal Communications
  • 16
    • 0029200546 scopus 로고
    • Maize kernel hardness estimation in breeding by near-infrared transmission analysis
    • Robutti, J. L. 1995. Maize kernel hardness estimation in breeding by near-infrared transmission analysis. Cereal Chem. 72(6): 632-636.
    • (1995) Cereal Chem. , vol.72 , Issue.6 , pp. 632-636
    • Robutti, J.L.1
  • 17
    • 17744386941 scopus 로고    scopus 로고
    • Site-specific study of corn protein, oil, and extractable starch variability using NIT spectroscopy
    • Singh, M., M. R. Paulsen, L. Tian, and H. Yao. 2005 Site-specific study of corn protein, oil, and extractable starch variability using NIT spectroscopy. Appl. Eng. in Agric. 21(2): 239-251.
    • (2005) Appl. Eng. in Agric. , vol.21 , Issue.2 , pp. 239-251
    • Singh, M.1    Paulsen, M.R.2    Tian, L.3    Yao, H.4
  • 18
    • 0029406175 scopus 로고    scopus 로고
    • Corn density measurement by near-infrared transmittance
    • Siska, J., and C. R. Hurburgh Jr. 1996. Corn density measurement by near-infrared transmittance. Trans. ASAE 38(6): 1821-1824.
    • (1996) Trans. ASAE , vol.38 , Issue.6 , pp. 1821-1824
    • Siska, J.1    Hurburgh Jr., C.R.2
  • 19
    • 70349598176 scopus 로고    scopus 로고
    • Highthroughput near-infrared reflectance spectroscopy for predicting quantitative and qualitative composition phenotypes of individual maize kernels
    • Spielbauer, G., P. R. Armstrong, J. W. Baier, W. B. Allen, K. Richardson, B. Shen, and A. M. Settles. 2009. Highthroughput near-infrared reflectance spectroscopy for predicting quantitative and qualitative composition phenotypes of individual maize kernels. Cereal Chem. 86(5): 556-564.
    • (2009) Cereal Chem. , vol.86 , Issue.5 , pp. 556-564
    • Spielbauer, G.1    Armstrong, P.R.2    Baier, J.W.3    Allen, W.B.4    Richardson, K.5    Shen, B.6    Settles, A.M.7
  • 20
    • 70749134915 scopus 로고    scopus 로고
    • Prediction of maize seed attributes using a rapid single kernel near infrared instrument
    • Tallada, J. G., N. Palacios-Rojas, and P. R. Armstrong. 2009. Prediction of maize seed attributes using a rapid single kernel near infrared instrument. J. Cereal Sci. 50(3): 381-387.
    • (2009) J. Cereal Sci. , vol.50 , Issue.3 , pp. 381-387
    • Tallada, J.G.1    Palacios-Rojas, N.2    Armstrong, P.R.3
  • 21
    • 33749573187 scopus 로고    scopus 로고
    • Increasing kernel density for two inbred lines of maize
    • Thompson, D. L., and M. M. Goodman. 2006. Increasing kernel density for two inbred lines of maize. Crop Sci. 46(5): 2179-2182.
    • (2006) Crop Sci. , vol.46 , Issue.5 , pp. 2179-2182
    • Thompson, D.L.1    Goodman, M.M.2
  • 22
    • 0029837537 scopus 로고    scopus 로고
    • Prediction of corm dry-milling quality by near-infrared spectroscopy
    • Wheling, R. L., D. S. Jackson, and B. R. Hamaker. 1996. Prediction of corm dry-milling quality by near-infrared spectroscopy. Cereal Chem. 75(5): 543-546.
    • (1996) Cereal Chem. , vol.75 , Issue.5 , pp. 543-546
    • Wheling, R.L.1    Jackson, D.S.2    Hamaker, B.R.3
  • 23
    • 71549146568 scopus 로고    scopus 로고
    • Maize kernel hardness classification by near infrared (NIR) hyperspectral imaging and multivariate data analysis
    • Williams, P., P. Geladib, G. Fox, and M. Manley. 2009. Maize kernel hardness classification by near infrared (NIR) hyperspectral imaging and multivariate data analysis. Analytica Chimica Acta 653(2): 121-130.
    • (2009) Analytica Chimica Acta , vol.653 , Issue.2 , pp. 121-130
    • Williams, P.1    Geladib, P.2    Fox, G.3    Manley, M.4
  • 24
    • 0041035832 scopus 로고
    • Relation of corn grain density to yields of dry milling products
    • Wu, Y. V., and R. R. Berquist. 1991. Relation of corn grain density to yields of dry milling products. Cereal Chem. 68(5): 524-544.
    • (1991) Cereal Chem. , vol.68 , Issue.5 , pp. 524-544
    • Wu, Y.V.1    Berquist, R.R.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.