-
1
-
-
33646645224
-
-
edited by H.P. Bonzel, Landolt Börnstein, New Series, Group III, Pt. A1 (Springer, Berlin
-
P. Zeppenfeld, in Noble Gases on Metals and Semiconductors, edited by H.P. Bonzel, Landolt Börnstein, New Series, Group III, Vol. 42, Pt. A1 (Springer, Berlin, 2001), p. 67.
-
(2001)
Noble Gases on Metals and Semiconductors
, vol.42
, pp. 67
-
-
Zeppenfeld, P.1
-
2
-
-
0000819359
-
-
G. Vidali, G. Ihm, H.-Y. Kim, and M.W. Cole, Surf. Sci. Rep. 12, 133 (1991).
-
(1991)
Surf. Sci. Rep.
, vol.12
, pp. 133
-
-
Vidali, G.1
Ihm, G.2
Kim, H.-Y.3
Cole, M.W.4
-
5
-
-
0000634199
-
-
W. Widdra, P. Trischberger, W. Frieß, D. Menzel, S.H. Payne, and H.J. Kreuzer, Phys. Rev. B 57, 4111 (1998).
-
(1998)
Phys. Rev. B
, vol.57
, pp. 4111
-
-
Widdra, W.1
Trischberger, P.2
Frieß, W.3
Menzel, D.4
Payne, S.H.5
Kreuzer, H.J.6
-
6
-
-
0003001739
-
-
V. Marsico, M. Blanc, K. Kuhnke, and K. Kern, Phys. Rev. Lett. 78, 94 (1997).
-
(1997)
Phys. Rev. Lett.
, vol.78
, pp. 94
-
-
Marsico, V.1
Blanc, M.2
Kuhnke, K.3
Kern, K.4
-
7
-
-
0001296441
-
-
V. Pouthier, C. Ramseyer, C. Girardet, K. Kuhnke, V. Marsico, M. Blanc, R. Schuster, and K. Kern, Phys. Rev. B 56, 4211 (1997).
-
(1997)
Phys. Rev. B
, vol.56
, pp. 4211
-
-
Pouthier, V.1
Ramseyer, C.2
Girardet, C.3
Kuhnke, K.4
Marsico, V.5
Blanc, M.6
Schuster, R.7
Kern, K.8
-
8
-
-
0033260188
-
-
F. Picaud, V. Pouthier, C. Ramseyer, and C. Girardet, Surf. Rev. Lett. 6, 669 (1999).
-
(1999)
Surf. Rev. Lett.
, vol.6
, pp. 669
-
-
Picaud, F.1
Pouthier, V.2
Ramseyer, C.3
Girardet, C.4
-
10
-
-
0001971347
-
-
R. Miranda, S. Daiser, K. Wandelt, and G. Ertl, Surf. Sci. 131, 61 (1983).
-
(1983)
Surf. Sci.
, vol.131
, pp. 61
-
-
Miranda, R.1
Daiser, S.2
Wandelt, K.3
Ertl, G.4
-
11
-
-
0000640395
-
-
H.R. Siddiqui, P.J. Chen, X. Guo, and J.T. Yates, Jr., J. Chem. Phys. 92, 7690 (1990).
-
(1990)
J. Chem. Phys.
, vol.92
, pp. 7690
-
-
Siddiqui, H.R.1
Chen, P.J.2
Guo, X.3
Yates, J.T.4
-
13
-
-
0028518425
-
-
P. Zeppenfeld, J. Goerge, M. Büchel, R. David, and G. Comsa, Surf. Sci. 318, L1187 (1994).
-
(1994)
Surf. Sci.
, vol.318
, pp. L1187
-
-
Zeppenfeld, P.1
Goerge, J.2
Büchel, M.3
David, R.4
Comsa, G.5
-
17
-
-
30244501530
-
-
H. Schlichting, D. Menzel, T. Brunner, and W. Brenig, J. Chem. Phys. 97, 4453 (1992).
-
(1992)
J. Chem. Phys.
, vol.97
, pp. 4453
-
-
Schlichting, H.1
Menzel, D.2
Brunner, T.3
Brenig, W.4
-
20
-
-
0034140246
-
-
M. Dienwiebel, P. Zeppenfeld, J. Einfeld, G. Comsa, F. Picaud, Ch. Ramseyer, and C. Girardet, Surf. Sci. 446, L113 (2000).
-
(2000)
Surf. Sci.
, vol.446
, pp. L113
-
-
Dienwiebel, M.1
Zeppenfeld, P.2
Einfeld, J.3
Comsa, G.4
Picaud, F.5
Ramseyer, C.6
Girardet, C.7
-
23
-
-
84955033803
-
-
C.T. Rettner, C.B. Mullins, D.S. Bethune, D.J. Auerbach, E.K. Schweizer, and W.H. Weinberg, J. Vac. Sci. Technol. A 8, 2699 (1990).
-
(1990)
J. Vac. Sci. Technol. A
, vol.8
, pp. 2699
-
-
Rettner, C.T.1
Mullins, C.B.2
Bethune, D.S.3
Auerbach, D.J.4
Schweizer, E.K.5
Weinberg, W.H.6
-
26
-
-
0542388946
-
-
K. Kern, R. David, R.L. Palmer, and G. Comsa, Surf. Sci. 175, L669 (1986).
-
(1986)
Surf. Sci.
, vol.175
, pp. L669
-
-
Kern, K.1
David, R.2
Palmer, R.L.3
Comsa, G.4
-
27
-
-
33744708238
-
-
K. Kern, R. David, P. Zeppenfeld, and G. Comsa, Surf. Sci. 195, 353 (1988).
-
(1988)
Surf. Sci.
, vol.195
, pp. 353
-
-
Kern, K.1
David, R.2
Zeppenfeld, P.3
Comsa, G.4
-
28
-
-
0042312179
-
-
of NATO Advanced Study Institute, Series B: Physics, edited by H. Taub et al. (Plenum Press, New York
-
K. Kern and G. Comsa, in Phase Transitions in Surface Films 2, Vol. 267 of NATO Advanced Study Institute, Series B: Physics, edited by H. Taub et al. (Plenum Press, New York, 1991), p.41.
-
(1991)
Phase Transitions in Surface Films
, vol.2
, pp. 41
-
-
Kern, K.1
Comsa, G.2
-
30
-
-
0023343749
-
-
K. Kern, R. David, P. Zeppenfeld, R.L. Palmer, and G. Comsa, Solid State Commun. 62, 391 (1987).
-
(1987)
Solid State Commun.
, vol.62
, pp. 391
-
-
Kern, K.1
David, R.2
Zeppenfeld, P.3
Palmer, R.L.4
Comsa, G.5
-
31
-
-
0000253920
-
-
A. Cassuto, J.J. Ehrhardt, J. Cousty, and R. Riwan, Surf. Sci. 194, 579 (1988).
-
(1988)
Surf. Sci.
, vol.194
, pp. 579
-
-
Cassuto, A.1
Ehrhardt, J.J.2
Cousty, J.3
Riwan, R.4
-
32
-
-
0029208017
-
-
M. Potthoff, G. Hilgers, N. Müller, U. Heinzmann, L. Haunert, J. Braun, and G. Borstel, Surf. Sci. 322, 193 (1995).
-
(1995)
Surf. Sci.
, vol.322
, pp. 193
-
-
Potthoff, M.1
Hilgers, G.2
Müller, N.3
Heinzmann, U.4
Haunert, L.5
Braun, J.6
Borstel, G.7
-
33
-
-
0000364841
-
-
Th. Seyller, M. Caragiu, R.D. Diehl, P. Kaukasoina, and M. Lindroos, Phys. Rev. B 60, 11 084 (1999).
-
(1999)
Phys. Rev. B
, vol.60
, pp. 11 084
-
-
Seyller, T.1
Caragiu, M.2
Diehl, R.D.3
Kaukasoina, P.4
Lindroos, M.5
-
36
-
-
0001473115
-
-
B. Hall, D.L. Mills, P. Zeppenfeld, K. Kern, U. Becher, and G. Comsa, Phys. Rev. B 40, 6326 (1989).
-
(1989)
Phys. Rev. B
, vol.40
, pp. 6326
-
-
Hall, B.1
Mills, D.L.2
Zeppenfeld, P.3
Kern, K.4
Becher, U.5
Comsa, G.6
-
50
-
-
85038324853
-
-
The phase diagram of Xe/Pt(111) has been studied in great detail (see, e.g., Refs. 262728). The (formula presented) commensurate phase is stable at temperatures (formula presented). At lower temperature and higher coverage, incommensurate domain-wall phases with either striped or hexagonal symmetry are observed
-
The phase diagram of Xe/Pt(111) has been studied in great detail (see, e.g., Refs. 262728). The (formula presented) commensurate phase is stable at temperatures (formula presented). At lower temperature and higher coverage, incommensurate domain-wall phases with either striped or hexagonal symmetry are observed.
-
-
-
-
51
-
-
85038290626
-
-
Simulations with different diffusion saddle points have been performed for this system. The effect of a 150 meV diffusion barrier, for instance, is barely visible in the monolayer desorption spectra
-
Simulations with different diffusion saddle points have been performed for this system. The effect of a 150 meV diffusion barrier, for instance, is barely visible in the monolayer desorption spectra.
-
-
-
-
53
-
-
33744597159
-
-
of NATO Advanced Study Insititute, Series C (Reidel, Dordrecht
-
M.B. Webb and L.W. Bruch, in Interfacial Aspects of Phase Transformations, edited by B. Mutaftschiev, Vol. 87 of NATO Advanced Study Insititute, Series C (Reidel, Dordrecht, 1982), p. 365.
-
(1982)
Interfacial Aspects of Phase Transformations, edited by B. Mutaftschiev
, vol.87
, pp. 365
-
-
Webb, M.B.1
Bruch, L.W.2
-
56
-
-
4243286443
-
-
K. Kern, R. David, R.L. Palmer, and G. Comsa, Phys. Rev. Lett. 56, 620 (1986).
-
(1986)
Phys. Rev. Lett.
, vol.56
, pp. 620
-
-
Kern, K.1
David, R.2
Palmer, R.L.3
Comsa, G.4
-
57
-
-
17044427910
-
-
P. Trischberger, H. Dröge, S. Gokhale, J. Henk, H.-P. Steinrück, W. Widdra, and D. Menzel, Surf. Sci. 377-379, 155 (1997).
-
(1997)
Surf. Sci.
, vol.377-379
, pp. 155
-
-
Trischberger, P.1
Dröge, H.2
Gokhale, S.3
Henk, J.4
Steinrück, H.-P.5
Widdra, W.6
Menzel, D.7
-
58
-
-
85038272797
-
-
The major argument in Ref. 7 to propose the bottom of the step edge to be occupied first was the overall intensity of the specular He intensity and the shift of the diffraction satellites towards larger exit angles after completion of the first Xe row. In our understanding, both observations are quite compatible with adsorption on top of the step edges. First, the pronounced intensity drop of the specular peak during formation of the first row indicates an exposed adsorption site on the upper terrace rather than within the “shadow” at the bottom of the diffusely scattering step edge. Second, one would expect a bending towards larger exit angles of the trajectories of those He atoms which after being diffracted from the flat part of the terraces experience the attractive potential of a Xe atom located on top of the step edge during their way out
-
The major argument in Ref. 7 to propose the bottom of the step edge to be occupied first was the overall intensity of the specular He intensity and the shift of the diffraction satellites towards larger exit angles after completion of the first Xe row. In our understanding, both observations are quite compatible with adsorption on top of the step edges. First, the pronounced intensity drop of the specular peak during formation of the first row indicates an exposed adsorption site on the upper terrace rather than within the “shadow” at the bottom of the diffusely scattering step edge. Second, one would expect a bending towards larger exit angles of the trajectories of those He atoms which after being diffracted from the flat part of the terraces experience the attractive potential of a Xe atom located on top of the step edge during their way out.
-
-
-
|