메뉴 건너뛰기




Volumn 2, Issue , 2012, Pages 1399-1406

A Dantzig selector approach to temporal difference learning

Author keywords

[No Author keywords available]

Indexed keywords

DANTZIG SELECTOR; FIXED-POINT PROBLEM; HIGH-DIMENSIONAL PROBLEMS; NOVEL ALGORITHM; NUMBER OF SAMPLES; P-MATRIX; REGRESSION ALGORITHMS; REGULARIZATION METHODS; TEMPORAL DIFFERENCE LEARNING; VALUE FUNCTION APPROXIMATION;

EID: 84867137477     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: None     Document Type: Conference Paper
Times cited : (23)

References (16)
  • 1
    • 68649086910 scopus 로고    scopus 로고
    • Simultaneous analysis of Lasso and Dantzig selector
    • Bickel, P. J., Ritov, Y., and Tsybakov, A. B. Simultaneous analysis of Lasso and Dantzig selector. The Annals of Statistics, 37(4):1705-1732, 2009.
    • (2009) The Annals of Statistics , vol.37 , Issue.4 , pp. 1705-1732
    • Bickel, P.J.1    Ritov, Y.2    Tsybakov, A.B.3
  • 2
    • 0001771345 scopus 로고    scopus 로고
    • Linear Least-Squares algorithms for temporal difference learning
    • Bradtke, S. J. and Barto, A. G. Linear Least-Squares algorithms for temporal difference learning. Machine Learning, 22:33-57, 1996.
    • (1996) Machine Learning , vol.22 , pp. 33-57
    • Bradtke, S.J.1    Barto, A.G.2
  • 3
    • 34548275795 scopus 로고    scopus 로고
    • The Dantzig selector: Statistical estimation when p is much larger than n
    • Candes, E. and Tao, T. The Dantzig selector: statistical estimation when p is much larger than n. Annals of Statistics, 35(6):2313-2351, 2007.
    • (2007) Annals of Statistics , vol.35 , Issue.6 , pp. 2313-2351
    • Candes, E.1    Tao, T.2
  • 6
    • 83155175393 scopus 로고    scopus 로고
    • Model selection in reinforcement learning
    • Farahmand, A. M. and Szepesvári, C. Model selection in reinforcement learning. Machine Learning Journal, 85 (3):299-332, 2011.
    • (2011) Machine Learning Journal , vol.85 , Issue.3 , pp. 299-332
    • Farahmand, A.M.1    Szepesvári, C.2
  • 10
    • 85162069759 scopus 로고    scopus 로고
    • Linear Complementarity for Regularized Policy Evaluation and Improvement
    • Johns, J., Painter-Wakefield, C., and Parr, R. Linear Complementarity for Regularized Policy Evaluation and Improvement. In Proc. of NIPS 23, 2010.
    • (2010) Proc. of NIPS , vol.23
    • Johns, J.1    Painter-Wakefield, C.2    Parr, R.3
  • 11
    • 71149121683 scopus 로고    scopus 로고
    • Regularization and Feature Selection in Least-Squares Temporal Difference Learning
    • Kolter, J. Z. and Ng, A. Y. Regularization and Feature Selection in Least-Squares Temporal Difference Learning. In Proc. of ICML, 2009.
    • (2009) Proc. of ICML
    • Kolter, J.Z.1    Ng, A.Y.2
  • 15
    • 85194972808 scopus 로고    scopus 로고
    • Regression Shrinkage and Selection via the Lasso
    • Tibshirani, R. Regression Shrinkage and Selection via the Lasso. Journal of the Royal Statistical Society, 58(1): 267-288, 1996.
    • (1996) Journal of the Royal Statistical Society , vol.58 , Issue.1 , pp. 267-288
    • Tibshirani, R.1
  • 16
    • 77953119098 scopus 로고    scopus 로고
    • Error Bounds for Approximations from Projected Linear Equations
    • Yu, H. and Bertsekas, D. P. Error Bounds for Approximations from Projected Linear Equations. Mathematics of Operations Research, 35:306-329, 2010.
    • (2010) Mathematics of Operations Research , vol.35 , pp. 306-329
    • Yu, H.1    Bertsekas, D.P.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.