메뉴 건너뛰기




Volumn 355-356, Issue , 2012, Pages 102-108

Thermal conductivity of MgO, MgSiO3 perovskite and post-perovskite in the Earth's deep mantle

Author keywords

Lower mantle; MgO; Molecular dynamics; Perovskite; Post perovskite; Thermal conductivity

Indexed keywords

CONDUCTIVITY TENSORS; CORE-MANTLE BOUNDARY; EARTH'S LOWER MANTLE; EQUILIBRIUM MOLECULAR DYNAMICS; GEOTHERMS; GREEN-KUBO; IONIC INTERACTION; IRON IMPURITIES; LATTICE THERMAL CONDUCTIVITY; LOWER MANTLE; MGO; MOLE FRACTION; PARAMETERIZED; POST-PEROVSKITE; POST-PEROVSKITE STRUCTURE; THERMAL BOUNDARY LAYER; THERMAL CONDUCTIVITY MODEL; THREE PHASIS;

EID: 84867119016     PISSN: 0012821X     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.epsl.2012.09.002     Document Type: Article
Times cited : (77)

References (49)
  • 2
    • 70450196688 scopus 로고    scopus 로고
    • Modelling the paleo-evolution of the geodynamo
    • Aubert J., Labrosse S., Poitou C. Modelling the paleo-evolution of the geodynamo. Geophys. J. Int. 2009, 179:1414-1428.
    • (2009) Geophys. J. Int. , vol.179 , pp. 1414-1428
    • Aubert, J.1    Labrosse, S.2    Poitou, C.3
  • 4
    • 33846618740 scopus 로고    scopus 로고
    • Mantle regulation of core cooling. a geodynamo without core radioactivity?
    • Davies G.F. Mantle regulation of core cooling. a geodynamo without core radioactivity?. Phys. Earth Planet. Int. 2007, 160:215-229.
    • (2007) Phys. Earth Planet. Int. , vol.160 , pp. 215-229
    • Davies, G.F.1
  • 6
    • 70349267554 scopus 로고    scopus 로고
    • Thermal conductivity of MgO periclase from equilibrium first principles molecular dynamics
    • de Koker N. Thermal conductivity of MgO periclase from equilibrium first principles molecular dynamics. Phys. Rev. Lett. 2009, 103:125902.
    • (2009) Phys. Rev. Lett. , vol.103 , pp. 125902
    • de Koker, N.1
  • 7
    • 77950596042 scopus 로고    scopus 로고
    • Thermal conductivity of MgO periclase at high pressure. implications for the D″ region
    • de Koker N. Thermal conductivity of MgO periclase at high pressure. implications for the D″ region. Earth Planet. Sci. Lett. 2010, 292:392-398.
    • (2010) Earth Planet. Sci. Lett. , vol.292 , pp. 392-398
    • de Koker, N.1
  • 9
    • 80052186834 scopus 로고    scopus 로고
    • Heat transport in silicon from first-principles calculations
    • Esfarjani K., Chen G. Heat transport in silicon from first-principles calculations. Phys. Rev. B 2011, 84:085204.
    • (2011) Phys. Rev. B , vol.84 , pp. 085204
    • Esfarjani, K.1    Chen, G.2
  • 10
    • 34249886016 scopus 로고    scopus 로고
    • Equilibrium and nonequilibrium molecular dynamics simulations of the thermal conductivity of molten alkali halides
    • Galamba N., Nieto de Castro C.A., Ely J.F. Equilibrium and nonequilibrium molecular dynamics simulations of the thermal conductivity of molten alkali halides. J. Chem. Phys. 2007, 126:204511.
    • (2007) J. Chem. Phys. , vol.126 , pp. 204511
    • Galamba, N.1    Nieto de Castro, C.A.2    Ely, J.F.3
  • 12
    • 0033548504 scopus 로고    scopus 로고
    • Mantle values of thermal conductivity and the geotherm from phonon lifetimes
    • Hofmeister A.M. Mantle values of thermal conductivity and the geotherm from phonon lifetimes. Science 1999, 283:1699-1706.
    • (1999) Science , vol.283 , pp. 1699-1706
    • Hofmeister, A.M.1
  • 13
    • 34548278478 scopus 로고    scopus 로고
    • Critical phenomena in thermal conductivity. implications for lower mantle dynamics
    • Hofmeister A.M., Yuen D.A. Critical phenomena in thermal conductivity. implications for lower mantle dynamics. J. Geodyn. 2007, 44:186-199.
    • (2007) J. Geodyn. , vol.44 , pp. 186-199
    • Hofmeister, A.M.1    Yuen, D.A.2
  • 14
    • 0001538909 scopus 로고
    • Canonical dynamics. equilibrium phase-space distributions
    • Hoover W.G. Canonical dynamics. equilibrium phase-space distributions. Phys. Rev. A 1985, 31:1695-1697.
    • (1985) Phys. Rev. A , vol.31 , pp. 1695-1697
    • Hoover, W.G.1
  • 16
    • 34250625655 scopus 로고    scopus 로고
    • Modeling Earth materials from crustal to lower mantle conditions. a transferable set of interaction potentials for the CMAS system
    • Jahn S., Madden P.A. Modeling Earth materials from crustal to lower mantle conditions. a transferable set of interaction potentials for the CMAS system. Phys. Earth Planet. Int. 2007, 162:129-139.
    • (2007) Phys. Earth Planet. Int. , vol.162 , pp. 129-139
    • Jahn, S.1    Madden, P.A.2
  • 17
    • 0030781758 scopus 로고    scopus 로고
    • Thermal diffusivity of periclase at high temperatures and high pressures
    • Katsura T. Thermal diffusivity of periclase at high temperatures and high pressures. Phys. Earth Planet. Int. 1997, 101:73-77.
    • (1997) Phys. Earth Planet. Int. , vol.101 , pp. 73-77
    • Katsura, T.1
  • 18
    • 57349180405 scopus 로고    scopus 로고
    • Optical absorption and radiative thermal conductivity of silicate perovskite to 125gigapascals
    • Keppler H., Dubrovinsky L.S., Narygina O., Kantor I. Optical absorption and radiative thermal conductivity of silicate perovskite to 125gigapascals. Science 2008, 322:1529-1532.
    • (2008) Science , vol.322 , pp. 1529-1532
    • Keppler, H.1    Dubrovinsky, L.S.2    Narygina, O.3    Kantor, I.4
  • 20
    • 12344271673 scopus 로고
    • Statistical-mechanical theory of irreversible processes. I
    • Kubo R. Statistical-mechanical theory of irreversible processes. I. J. Phys. Soc. Jpn. 1957, 12:570-586.
    • (1957) J. Phys. Soc. Jpn. , vol.12 , pp. 570-586
    • Kubo, R.1
  • 22
    • 81055145466 scopus 로고    scopus 로고
    • Lattice thermal conductivity of lower mantle minerals and heat flux from Earth's core
    • Manthilake G.M., de Koker N., Frost D.J., McCammon C. Lattice thermal conductivity of lower mantle minerals and heat flux from Earth's core. Proc. Natl. Acad. Sci. 2011, 108:17901-17904.
    • (2011) Proc. Natl. Acad. Sci. , vol.108 , pp. 17901-17904
    • Manthilake, G.M.1    de Koker, N.2    Frost, D.J.3    McCammon, C.4
  • 24
    • 36449003554 scopus 로고
    • Constant pressure molecular dynamics algorithms
    • Martyna G.J., Tobias D.J., Klein M.L. Constant pressure molecular dynamics algorithms. J. Chem. Phys. 1994, 101:4177-4189.
    • (1994) J. Chem. Phys. , vol.101 , pp. 4177-4189
    • Martyna, G.J.1    Tobias, D.J.2    Klein, M.L.3
  • 25
    • 0031559226 scopus 로고    scopus 로고
    • A simple nonequilibrium molecular dynamics method for calculating the thermal conductivity
    • Müller-Plathe F. A simple nonequilibrium molecular dynamics method for calculating the thermal conductivity. J. Chem. Phys. 1997, 106:6082-6085.
    • (1997) J. Chem. Phys. , vol.106 , pp. 6082-6085
    • Müller-Plathe, F.1
  • 27
    • 33947547372 scopus 로고    scopus 로고
    • Can large increases in viscosity and thermal conductivity preserve large-scale heterogeneity in the mantle?
    • Naliboff J.B., Kellogg L.H. Can large increases in viscosity and thermal conductivity preserve large-scale heterogeneity in the mantle?. Phys. Earth Planet. Int. 2007, 161:86-102.
    • (2007) Phys. Earth Planet. Int. , vol.161 , pp. 86-102
    • Naliboff, J.B.1    Kellogg, L.H.2
  • 28
    • 1542287411 scopus 로고    scopus 로고
    • Non-equilibrium momentum exchange algorithm for molecular dynamics simulation of heat flow in multicomponent systems
    • Nieto-Draghi C., Avalos J.B. Non-equilibrium momentum exchange algorithm for molecular dynamics simulation of heat flow in multicomponent systems. Mol. Phys. 2003, 101:2303-2307.
    • (2003) Mol. Phys. , vol.101 , pp. 2303-2307
    • Nieto-Draghi, C.1    Avalos, J.B.2
  • 29
    • 84943502952 scopus 로고
    • A molecular dynamics method for simulations in the canonical ensemble
    • Nosé S. A molecular dynamics method for simulations in the canonical ensemble. Mol. Phys. 1984, 52:255-268.
    • (1984) Mol. Phys. , vol.52 , pp. 255-268
    • Nosé, S.1
  • 30
    • 3343022873 scopus 로고    scopus 로고
    • 3 in Earth's D″ layer
    • 3 in Earth's D″ layer. Nature 2004, 430:445-448.
    • (2004) Nature , vol.430 , pp. 445-448
    • Oganov, A.R.1    Ono, S.2
  • 32
    • 59349083443 scopus 로고    scopus 로고
    • Thermal conductivity of molten alkali halides. temperature and density dependence
    • Ohtori N., Oono T., Takase T. Thermal conductivity of molten alkali halides. temperature and density dependence. J. Chem. Phys. 2009, 130:044505.
    • (2009) J. Chem. Phys. , vol.130 , pp. 044505
    • Ohtori, N.1    Oono, T.2    Takase, T.3
  • 33
    • 62549133534 scopus 로고    scopus 로고
    • Calculations of the thermal conductivities of ionic materials by simulation with polarizable interaction potentials
    • Ohtori N., Salanne M., Madden P.A. Calculations of the thermal conductivities of ionic materials by simulation with polarizable interaction potentials. J. Chem. Phys. 2009, 130:104507.
    • (2009) J. Chem. Phys. , vol.130 , pp. 104507
    • Ohtori, N.1    Salanne, M.2    Madden, P.A.3
  • 40
    • 0035090377 scopus 로고    scopus 로고
    • Quasi-hydrostatic compression of magnesium oxide to 52GPa. implications for the pressure-volume-temperature equation of state
    • Speziale S., Zha C.-S., Duffy T.S., Hemley R.J., Mao H.-k. Quasi-hydrostatic compression of magnesium oxide to 52GPa. implications for the pressure-volume-temperature equation of state. J. Geophys. Res. 2001, 106:515-528.
    • (2001) J. Geophys. Res. , vol.106 , pp. 515-528
    • Speziale, S.1    Zha, C.-S.2    Duffy, T.S.3    Hemley, R.J.4    Mao, H.-K.5
  • 42
    • 77952514304 scopus 로고    scopus 로고
    • Thermal conductivity of periclase (MgO) from first principles
    • Stackhouse S., Stixrude L., Karki B.B. Thermal conductivity of periclase (MgO) from first principles. Phys. Rev. Lett. 2010, 104:208501.
    • (2010) Phys. Rev. Lett. , vol.104 , pp. 208501
    • Stackhouse, S.1    Stixrude, L.2    Karki, B.B.3
  • 43
    • 80355125293 scopus 로고    scopus 로고
    • Thermal and transport properties of mantle rock at high pressure. applications to super-Earths
    • Stamenković V., Breuer D., Spohn T. Thermal and transport properties of mantle rock at high pressure. applications to super-Earths. Icarus 2011, 216:572-596.
    • (2011) Icarus , vol.216 , pp. 572-596
    • Stamenković, V.1    Breuer, D.2    Spohn, T.3
  • 44
    • 21844443054 scopus 로고    scopus 로고
    • Thermodynamics of mantle minerals-I. Physical properties
    • Stixrude L., Lithgow-Bertelloni C. Thermodynamics of mantle minerals-I. Physical properties. Geophys. J. Int. 2005, 162:610-632.
    • (2005) Geophys. J. Int. , vol.162 , pp. 610-632
    • Stixrude, L.1    Lithgow-Bertelloni, C.2
  • 45
    • 33745958034 scopus 로고
    • Isotope scattering of dispersive phonons in Ge
    • Tamura S.-I. Isotope scattering of dispersive phonons in Ge. Phys. Rev. B 1983, 27:858-866.
    • (1983) Phys. Rev. B , vol.27 , pp. 858-866
    • Tamura, S.-I.1
  • 46
    • 79960208758 scopus 로고    scopus 로고
    • On the location of plumes and lateral movement of thermochemical structures with high bulk modulus in the 3-D compressible mantle
    • Tan E., Leng W., Zhong S., Gurnis M. On the location of plumes and lateral movement of thermochemical structures with high bulk modulus in the 3-D compressible mantle. Geochem. Geophys. Geosys. 2011, 12:Q07005.
    • (2011) Geochem. Geophys. Geosys. , vol.12
    • Tan, E.1    Leng, W.2    Zhong, S.3    Gurnis, M.4
  • 47
    • 77949501683 scopus 로고    scopus 로고
    • Lattice thermal conductivity of MgO at conditions of Earth's interior
    • Tang X., Dong J. Lattice thermal conductivity of MgO at conditions of Earth's interior. Proc. Natl. Acad. Sci. 2010, 107:4539-4543.
    • (2010) Proc. Natl. Acad. Sci. , vol.107 , pp. 4539-4543
    • Tang, X.1    Dong, J.2
  • 48
    • 0001344146 scopus 로고    scopus 로고
    • Molecular-dynamics simulation of thermal conductivity of silicon crystals
    • Volz S.G., Chen G. Molecular-dynamics simulation of thermal conductivity of silicon crystals. Phys. Rev. B 2000, 61:2651-2656.
    • (2000) Phys. Rev. B , vol.61 , pp. 2651-2656
    • Volz, S.G.1    Chen, G.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.