메뉴 건너뛰기




Volumn , Issue , 2002, Pages I-291-I-335

Neural network systems and their applications in software sensor systems for chemical and biotechnological processes

Author keywords

[No Author keywords available]

Indexed keywords


EID: 84866981991     PISSN: None     EISSN: None     Source Type: Book    
DOI: None     Document Type: Chapter
Times cited : (7)

References (121)
  • 1
    • 0025403609 scopus 로고
    • Improvement of the backpropagation algorithm for training neural networks
    • Leonard, J. and Kramer, M.A., Improvement of the backpropagation algorithm for training neural networks, Comput. Chem. Eng., 14, 337-341, 1990.
    • (1990) Comput. Chem. Eng. , vol.14 , pp. 337-341
    • Leonard, J.1    Kramer, M.A.2
  • 2
    • 0026154952 scopus 로고
    • Fast training algorithms for multilayer neural nets
    • Brent, R.P., Fast training algorithms for multilayer neural nets, IEEE Trans. Neural Nets, 2, 346-354, 1991.
    • (1991) IEEE Trans. Neural Nets , vol.2 , pp. 346-354
    • Brent, R.P.1
  • 3
    • 84954943722 scopus 로고
    • Neural networks for nonlinear dynamic system modelling and identification
    • Chen, S. and Billings, S.A., Neural networks for nonlinear dynamic system modelling and identification, Int. J. Control, 56, 319-346, 1992.
    • (1992) Int. J. Control , vol.56 , pp. 319-346
    • Chen, S.1    Billings, S.A.2
  • 4
    • 0043243991 scopus 로고
    • A fast procedure for the training of neural networks
    • Peel, C., Willis, M.J., and Tham, M.T., A fast procedure for the training of neural networks, J. Proc. Cont., 2, 205-211, 1992.
    • (1992) J. Proc. Cont. , vol.2 , pp. 205-211
    • Peel, C.1    Willis, M.J.2    Tham, M.T.3
  • 5
    • 0002855438 scopus 로고
    • Some global convergence properties of a variable metric algorithm for minimisation without exact line searches
    • Cottle, R. and Lemke, C.E., Eds
    • Powell, M.J.D., Some global convergence properties of a variable metric algorithm for minimisation without exact line searches, in SIAM-AMS Proc. Symp. on Non-Linear Programming, Cottle, R. and Lemke, C.E., Eds., 1975, IX: 53-72.
    • (1975) SIAM-AMS Proc. Symp. on Non-Linear Programming , vol.9 , pp. 53-72
    • Powell, M.J.D.1
  • 7
    • 0002976990 scopus 로고
    • Artificial intelligence: Starting to realise its practical promise
    • Crowe, E.R. and Vassiliadis, C.A., Artificial intelligence: Starting to realise its practical promise, Chem. Eng. Progr., 91(1), 22-31, 1995.
    • (1995) Chem. Eng. Progr. , vol.91 , Issue.1 , pp. 22-31
    • Crowe, E.R.1    Vassiliadis, C.A.2
  • 8
    • 0025513821 scopus 로고
    • Connectionist ideas and algorithms
    • Knight, K., Connectionist ideas and algorithms, Comm. of the ACM, 33(11), 59-74, 1990.
    • (1990) Comm. of the ACM , vol.33 , Issue.11 , pp. 59-74
    • Knight, K.1
  • 9
    • 0027576905 scopus 로고
    • Use of neural networks for problem solving
    • Chitra, S.P., Use of neural networks for problem solving, Chem. Eng. Progress, 89(4), 44-52, 1993.
    • (1993) Chem. Eng. Progress , vol.89 , Issue.4 , pp. 44-52
    • Chitra, S.P.1
  • 10
    • 0030174707 scopus 로고    scopus 로고
    • Genetic algorithms and artificial neural network. (1) training artificial neural network with extended genetic algorithms
    • Chen, F., Chen, B., and He, X., Genetic algorithms and artificial neural network. (1) training artificial neural network with extended genetic algorithms, J. Chem. Ind. Eng., 47(3), 280-286, 1996.
    • (1996) J. Chem. Ind. Eng. , vol.47 , Issue.3 , pp. 280-286
    • Chen, F.1    Chen, B.2    He, X.3
  • 11
    • 0025592836 scopus 로고
    • Diagnosis using backpropagation neural networks-analysis and criticism
    • Kramer, M.A. and Leonard, JA., Diagnosis using backpropagation neural networks-analysis and criticism, Comput. Chem. Eng., 14, 1323-1338, 1990.
    • (1990) Comput. Chem. Eng. , vol.14 , pp. 1323-1338
    • Kramer, M.A.1    Leonard, J.A.2
  • 12
    • 0000674495 scopus 로고    scopus 로고
    • Confidence bounds for neural network representations
    • Shao, R. et al., Confidence bounds for neural network representations, Comput. Chem. Eng., 21, s1173-s1178, 1997.
    • (1997) Comput. Chem. Eng. , vol.21 , pp. s1173-s1178
    • Shao, R.1
  • 13
    • 0001650974 scopus 로고    scopus 로고
    • Inferential estimation of polymer quality using stacked neural networks
    • Zhang, J. et al., Inferential estimation of polymer quality using stacked neural networks, Comput. Chem. Eng., 21, s1025-s1030, 1997.
    • (1997) Comput. Chem. Eng. , vol.21 , pp. s1025-s1030
    • Zhang, J.1
  • 14
  • 16
    • 0033309617 scopus 로고    scopus 로고
    • Modelling jet fuel endpoint using neural networks with genetic learning
    • Dec
    • Zhong, W. and Yu, J., Modelling jet fuel endpoint using neural networks with genetic learning, Hydrocarbon Processing, Dec., 77-80, 1999.
    • (1999) Hydrocarbon Processing , pp. 77-80
    • Zhong, W.1    Yu, J.2
  • 18
    • 0032179443 scopus 로고    scopus 로고
    • Software sensor design using Bayesian automatic classification and back-propagation neural networks
    • Chen, F.Z. and Wang, X.Z., Software sensor design using Bayesian automatic classification and back-propagation neural networks, Ind. Eng. Chem. Res., 37, 3985, 1998.
    • (1998) Ind. Eng. Chem. Res. , vol.37 , pp. 3985
    • Chen, F.Z.1    Wang, X.Z.2
  • 20
    • 0032074376 scopus 로고    scopus 로고
    • Soft sensor based predictive control of industrial fluid catalytic cracking processes
    • Yang, S.H. et al., Soft sensor based predictive control of industrial fluid catalytic cracking processes, Chem. Eng. Res. Des.-Trans. IChemE, 76A, 499-508, 1998.
    • (1998) Chem. Eng. Res. Des.-Trans. IChemE , vol.76A , pp. 499-508
    • Yang, S.H.1
  • 21
    • 0028713967 scopus 로고
    • Characterization of the behaviour and product distribution in fluid catalytic cracking using neural networks
    • McGreavy, C. et al., Characterization of the behaviour and product distribution in fluid catalytic cracking using neural networks, Chem. Eng. Sci., 49, 4717-4724, 1994.
    • (1994) Chem. Eng. Sci. , vol.49 , pp. 4717-4724
    • McGreavy, C.1
  • 22
    • 0031099543 scopus 로고    scopus 로고
    • On-line estimation of vapour pressure of stabilized gasoline via ANN’s
    • He, X.R., Zhao, X.G., and Chen, B.Z., On-line estimation of vapour pressure of stabilized gasoline via ANN’s, Chinese J. Chem. Eng., 5(1), 23-28, 1997.
    • (1997) Chinese J. Chem. Eng. , vol.5 , Issue.1 , pp. 23-28
    • He, X.R.1    Zhao, X.G.2    Chen, B.Z.3
  • 23
    • 0031102457 scopus 로고    scopus 로고
    • Neural network intelligent system for the on-line optimization in chemical plants
    • Chen, B.Z. and He, X.R., Neural network intelligent system for the on-line optimization in chemical plants, Chinese J. Chem. Eng., 5(1), 57-62, 1997.
    • (1997) Chinese J. Chem. Eng. , vol.5 , Issue.1 , pp. 57-62
    • Chen, B.Z.1    He, X.R.2
  • 25
    • 0032804290 scopus 로고    scopus 로고
    • Inferential estimation of polymer quality using bootstrap aggregated neural networks
    • Zhang, J., Inferential estimation of polymer quality using bootstrap aggregated neural networks, Neural Networks, 12, 927-938, 1999.
    • (1999) Neural Networks , vol.12 , pp. 927-938
    • Zhang, J.1
  • 26
    • 0035508109 scopus 로고    scopus 로고
    • Living polymerization reactors: Molecular weight distribution control using inverse neural network models
    • print
    • Gosden, R.G. et al., Living polymerization reactors: molecular weight distribution control using inverse neural network models, Polymer Reaction Eng., 9(4), in print, 2001.
    • (2001) Polymer Reaction Eng. , vol.9 , Issue.4
    • Gosden, R.G.1
  • 27
    • 0033079980 scopus 로고    scopus 로고
    • Quality inferential control of an industrial high density polyethylene process
    • Ogawa, M. et al., Quality inferential control of an industrial high density polyethylene process, J. Process Control, 9, 51-59, 1999.
    • (1999) J. Process Control , vol.9 , pp. 51-59
    • Ogawa, M.1
  • 29
    • 0032584917 scopus 로고    scopus 로고
    • Application of radial basis function and feedforward artificial neural networks to the Esherichia coli fermentation process
    • Mark, W. et al., Application of radial basis function and feedforward artificial neural networks to the Esherichia coli fermentation process, Neurocomputing, 20, 67, 1998.
    • (1998) Neurocomputing , vol.20 , pp. 67
    • Mark, W.1
  • 30
    • 0028305182 scopus 로고
    • Fuzzy NN for the control of high cell density cultivation of recombinant Esherichia coli
    • Ye, K., Jin, S., and Shimizu, K., Fuzzy NN for the control of high cell density cultivation of recombinant Esherichia coli., J. Fermentation and Bioeng., 77, 663, 1994.
    • (1994) J. Fermentation and Bioeng. , vol.77 , pp. 663
    • Ye, K.1    Jin, S.2    Shimizu, K.3
  • 31
    • 84949107417 scopus 로고    scopus 로고
    • Neural network modelling and predictive control of yeast starter production in champagne
    • European Control Conference '97
    • Latrille, E. et al., Neural network modelling and predictive control of yeast starter production in champagne, in CD-Proc. ECC’97, European Control Conference '97, 1997.
    • (1997) CD-Proc. ECC’97
    • Latrille, E.1
  • 33
    • 0025701454 scopus 로고
    • On-line prediction of fermentation variables using neural networks
    • Thibault, J., Breusegem, van V., and Cheruy, A., On-line prediction of fermentation variables using neural networks, Biotech. and Bioeng., 36, 1041, 1990.
    • (1990) Biotech. and Bioeng. , vol.36 , pp. 1041
    • Thibault, J.1    Breusegem, V.V.2    Cheruy, A.3
  • 35
    • 0010980912 scopus 로고
    • Seed data analysis for production fermenter performance estimation
    • Germany
    • Ignova, M. et al., Seed data analysis for production fermenter performance estimation, in Preprints of the 6th Intern. Conf. Comp. Appl. Biotech., Germany, 53, 1995.
    • (1995) Preprints of the 6th Intern. Conf. Comp. Appl. Biotech. , pp. 53
    • Ignova, M.1
  • 36
    • 0002014410 scopus 로고
    • Model-aided on-line glucose monitoring for computer-controlled high cell density fermentation
    • Germany
    • Pfaff, M. et al., Model-aided on-line glucose monitoring for computer-controlled high cell density fermentation, in Preprints of the 6th Int. Conf. Comp. Appl. Biotech., Germany, 6, 1995.
    • (1995) Preprints of the 6th Int. Conf. Comp. Appl. Biotech. , pp. 6
    • Pfaff, M.1
  • 37
    • 0006081986 scopus 로고
    • Neural networks in estimation and control of antibody production using hybridoma cells in fed-batch cultures
    • Germany
    • Oh, G.S. et al., Neural networks in estimation and control of antibody production using hybridoma cells in fed-batch cultures, in Preprints of the 6th Intern. Conf. Comp. Appl. Biotech., Germany, 183, 1995.
    • (1995) Preprints of the 6th Intern. Conf. Comp. Appl. Biotech. , pp. 183
    • Oh, G.S.1
  • 38
    • 84887396441 scopus 로고    scopus 로고
    • Soft sensor for adaptive pH control, an industrial application
    • Rouzic, Y. Le et al., Soft sensor for adaptive pH control, an industrial application, in Proc. European Control Conf. ECC’97, 297, 1997.
    • (1997) Proc. European Control Conf. ECC’97 , pp. 297
    • Le, R.Y.1
  • 39
    • 0031332333 scopus 로고    scopus 로고
    • Constrained long-range predictive control based on artificial neural networks
    • Najim, K. et al., Constrained long-range predictive control based on artificial neural networks, Int. J. System Sci., 28, 1211, 1997.
    • (1997) Int. J. System Sci. , vol.28 , pp. 1211
    • Najim, K.1
  • 40
    • 0030286180 scopus 로고    scopus 로고
    • Generalized predictive control based on neural networks
    • Rusnak, A. et al., Generalized predictive control based on neural networks, Neural Processing Letter, 4, 107, 1996.
    • (1996) Neural Processing Letter , vol.4 , pp. 107
    • Rusnak, A.1
  • 41
    • 0344878039 scopus 로고
    • Bioreactor modeling and control by principal component based neural networks
    • Germany
    • Kurtanjek, Z., Bioreactor modeling and control by principal component based neural networks, in Preprints of the 6th Intern. Conf. Comp. Appl. Biotech., Germany, 300, 1995.
    • (1995) Preprints of the 6th Intern. Conf. Comp. Appl. Biotech. , pp. 300
    • Kurtanjek, Z.1
  • 43
    • 0034372481 scopus 로고    scopus 로고
    • Applications of artificial neural networks in chemical engineering
    • Himmelblau, D.M., Applications of artificial neural networks in chemical engineering, Korean J. Chem. Eng., 17(4), 373-392, 2000.
    • (2000) Korean J. Chem. Eng. , vol.17 , Issue.4 , pp. 373-392
    • Himmelblau, D.M.1
  • 45
    • 0000672424 scopus 로고
    • Fast learning in networks of locally-tuned processing units
    • Moody, J. and Darken, C.J., Fast learning in networks of locally-tuned processing units, Neural Computation, 1, 28, 1989.
    • (1989) Neural Computation , vol.1 , pp. 28
    • Moody, J.1    Darken, C.J.2
  • 48
    • 0002607026 scopus 로고    scopus 로고
    • Bayesian classification (AutoClass): Theory and results
    • Fayyad, U. M., Gregory Piatetsky-Shapiro, P.S., Ramasamy, U., Eds., AAAI Press/MIT Press
    • Cheeseman, P. and Stutz, J., Bayesian classification (AutoClass): theory and results, in Advances in Knowledge Discovery and Data Mining; Fayyad, U. M., Gregory Piatetsky-Shapiro, P.S., Ramasamy, U., Eds., AAAI Press/MIT Press, 1996.
    • (1996) Advances in Knowledge Discovery and Data Mining;
    • Cheeseman, P.1    Stutz, J.2
  • 50
    • 5444267428 scopus 로고    scopus 로고
    • Assessing toxicology quickly and efficiently
    • April
    • Smith, D., Assessing toxicology quickly and efficiently, Chem Eng., 107, April, 25-128, 2000.
    • (2000) Chem Eng. , vol.107 , pp. 25-128
    • Smith, D.1
  • 51
    • 0029133355 scopus 로고
    • Assessing the risk assessment paradigm
    • Omenn, G., Assessing the risk assessment paradigm, Toxicology, 23, 23-28, 1995.
    • (1995) Toxicology , vol.23 , pp. 23-28
    • Omenn, G.1
  • 52
    • 0033626031 scopus 로고    scopus 로고
    • Software analyser design using data mining technology for toxicity prediction of aqueous effluents
    • Yuan, B., Wang, X.Z., and Morris, T., Software analyser design using data mining technology for toxicity prediction of aqueous effluents, Waste Management, 20, 677-686, 2000.
    • (2000) Waste Management , vol.20 , pp. 677-686
    • Yuan, B.1    Wang, X.Z.2    Morris, T.3
  • 53
    • 0030286114 scopus 로고    scopus 로고
    • Neural net based knowledge extraction from the historical data of an industrial leaching process
    • Rademan, J.A.M. et al., Neural net based knowledge extraction from the historical data of an industrial leaching process, Hydrometallurgy, 43, 95, 1996.
    • (1996) Hydrometallurgy , vol.43 , pp. 95
    • Rademan, J.A.M.1
  • 54
    • 0033117073 scopus 로고    scopus 로고
    • Neural network approach to sensitivity and uncertainty analysis
    • Ricotti, M.E. and Zio, E., Neural network approach to sensitivity and uncertainty analysis, Reliability Engineering and System Safety, 64, 59, 1999.
    • (1999) Reliability Engineering and System Safety , vol.64 , pp. 59
    • Ricotti, M.E.1    Zio, E.2
  • 55
    • 0031114560 scopus 로고    scopus 로고
    • Data mining of inputs: Analysing magnitude and functional measures
    • Gedeon, T.D., Data mining of inputs: analysing magnitude and functional measures, Int. J. Neural Systems, 8, 209, 1997.
    • (1997) Int. J. Neural Systems , vol.8 , pp. 209
    • Gedeon, T.D.1
  • 56
    • 0000671231 scopus 로고    scopus 로고
    • Ranking importance of input parameters of neural networks
    • Sung, A.H., Ranking importance of input parameters of neural networks, Expert Systems with Applications, 15, 405, 1998.
    • (1998) Expert Systems with Applications , vol.15 , pp. 405
    • Sung, A.H.1
  • 57
    • 0032403972 scopus 로고    scopus 로고
    • Sensitivity analysis of complex models
    • Drechsler, M., Sensitivity analysis of complex models, Biological Conservation, 86, 401, 1998.
    • (1998) Biological Conservation , vol.86 , pp. 401
    • Drechsler, M.1
  • 58
    • 0032317676 scopus 로고    scopus 로고
    • An on-linewastewater quality prediction system based on a time-delay neural network
    • Zhu, J., et al., An on-linewastewater quality prediction system based on a time-delay neural network, Engineer. Appl. Artificial Intelligence, 11, 747, 1998.
    • (1998) Engineer. Appl. Artificial Intelligence , vol.11 , pp. 747
    • Zhu, J.1
  • 59
    • 0343752494 scopus 로고
    • Self determination of input variable importance using neural networks
    • Bartlett, E.B., Self determination of input variable importance using neural networks, Neural, Parallel and Scientific Computations, 2, 103, 1994.
    • (1994) Neural, Parallel and Scientific Computations , vol.2 , pp. 103
    • Bartlett, E.B.1
  • 60
    • 0032632420 scopus 로고    scopus 로고
    • Statistical analyses of scatter plots to identify important factors in large-scale simulations, 1: Review and comparison of techniques
    • Kleijnen, J.P.C. and Helton, J.C., Statistical analyses of scatter plots to identify important factors in large-scale simulations, 1: Review and comparison of techniques, Reliability Engineering and System Safety, 65, 147, 1999.
    • (1999) Reliability Engineering and System Safety , vol.65 , pp. 147
    • Kleijnen, J.P.C.1    Helton, J.C.2
  • 61
    • 0001867238 scopus 로고
    • Interpreting neural network connection weights
    • April
    • Garson, G.D., Interpreting neural network connection weights, AI Expert, April: 47, 1991.
    • (1991) AI Expert , pp. 47
    • Garson, G.D.1
  • 62
    • 0028570720 scopus 로고
    • Sensitivity analysis for minimization of input data dimension for feed forward neural network
    • IEEE Press, London
    • Zurada, J.M., Malinowski, A., and Cloete, I., Sensitivity analysis for minimization of input data dimension for feed forward neural network, Proc. IEEE Int. Symp. on Circuits and Systems, IEEE Press, London, 1994.
    • (1994) Proc. IEEE Int. Symp. on Circuits and Systems
    • Zurada, J.M.1    Malinowski, A.2    Cloete, I.3
  • 63
    • 0000607186 scopus 로고
    • Sensitivity analysis, calibration and validation, in Mathematical Modelling of Water Quality: Streams
    • Lakes and Reservoirs, Orlob, G. T. (Ed), Wiley, Chichester
    • Beck, M.B., Sensitivity analysis, calibration and validation, in Mathematical Modelling of Water Quality: Streams, Lakes and Reservoirs, Orlob, G. T. (Ed)., Int. Series on Applica. System Analysis, Volume 12, Wiley, Chichester, pp. 425-467, 1983.
    • (1983) Int. Series on Applica. System Analysis , vol.12 , pp. 425-467
    • Beck, M.B.1
  • 64
    • 0033103912 scopus 로고    scopus 로고
    • Molecular level studies on the origin of toxicity: Identification of key variables and selection of descriptors
    • Okey, R.W. and Martis, M.C., Molecular level studies on the origin of toxicity: Identification of key variables and selection of descriptors, Chemosphere, 38, 1419, 1999.
    • (1999) Chemosphere , vol.38 , pp. 1419
    • Okey, R.W.1    Martis, M.C.2
  • 66
    • 84941531642 scopus 로고
    • A new approach to fuzzy-neural system modelling
    • Lin, V. and Cunningham III, G.A., A new approach to fuzzy-neural system modelling, IEEE Trans. Fuzzy Systems, 3, 190, 1995.
    • (1995) IEEE Trans. Fuzzy Systems , vol.3 , pp. 190
    • Lin, V.1    Cunningham, G.A.2
  • 67
    • 0032746078 scopus 로고    scopus 로고
    • Model-based estimation of an anaerobic reductive dechlorination process via an ATR-FTIR (attenuated total reflection-Fourier transf. infrared) sensor
    • Acha, V. et al., Model-based estimation of an anaerobic reductive dechlorination process via an ATR-FTIR (attenuated total reflection-Fourier transf. infrared) sensor, Wat. Sci. Technol., 40, 8, 33, 1999.
    • (1999) Wat. Sci. Technol. , vol.40 , Issue.8 , pp. 33
    • Acha, V.1
  • 68
    • 85057270192 scopus 로고
    • Agricultural feedstock and waste treatment and engineering
    • Springer-Verlag, Berlin
    • Parulekar, S.J. and Lin, H.C., Agricultural feedstock and waste treatment and engineering, in Advances in Biochemical Engineering and Biotechnology, vol. 32, Springer-Verlag, Berlin, 227, 1985.
    • (1985) Advances in Biochemical Engineering and Biotechnology , vol.32 , pp. 227
    • Parulekar, S.J.1    Lin, H.C.2
  • 69
    • 85057281482 scopus 로고
    • Adaptive control based on neural network with biotechnological applications
    • Ostrava, Czech, Sept
    • Atanasova, T., Grancharova, A. and Vasileva, S., Adaptive control based on neural network with biotechnological applications, in Proc. Int. Sci. Conf. Comp. Sci, Ostrava, Czech, 425, Sept., 1995.
    • (1995) Proc. Int. Sci. Conf. Comp. Sci , pp. 425
    • Atanasova, T.1    Grancharova, A.2    Vasileva, S.3
  • 70
    • 0021233390 scopus 로고
    • Dynamics of growth in batch and continous cultures of Saccharomyces cerevisiae during shifts from aerobiosis to anaerobiosis and reverse
    • Auling, G. et al., Dynamics of growth in batch and continous cultures of Saccharomyces cerevisiae during shifts from aerobiosis to anaerobiosis and reverse, Appl. Microbiol. Biotech., 19, 353, 1984.
    • (1984) Appl. Microbiol. Biotech. , vol.19 , pp. 353
    • Auling, G.1
  • 71
    • 0025841057 scopus 로고
    • Declarative programming tools for fermentor control systems
    • Pergamon Press Inc., Elmsford
    • Bakay, A. et al., Declarative programming tools for fermentor control systems, in Proc. 11th Triennial World Congress IFAC, vol. 4, Pergamon Press Inc., Elmsford, 293, 1991.
    • (1991) Proc. 11th Triennial World Congress IFAC , vol.4 , pp. 293
    • Bakay, A.1
  • 73
    • 84887326902 scopus 로고
    • Non-traditional tasks for control of microorganisms’ cultivation processes by using computers
    • Moscow, Nauka (in Russian)
    • Biryukov, V.V., Non-traditional tasks for control of microorganisms’ cultivation processes by using computers, in Theory and Practice of Continuous Micro-Organisms’ Cultivation, Moscow, Nauka (in Russian), 139, 1980.
    • (1980) Theory and Practice of Continuous Micro-Organisms’ Cultivation , pp. 139
    • Biryukov, V.V.1
  • 75
    • 0002606725 scopus 로고
    • Anewmethod of constrained optimization and a comparison with other methods
    • Box, M., Anewmethod of constrained optimization and a comparison with other methods, Comp. J., vol. 8, 1965.
    • (1965) Comp. J. , vol.8
    • Box, M.1
  • 76
    • 85057264123 scopus 로고
    • Readings in intelligent knowledge-based systems
    • ver.1.0
    • Bowerman, C., Readings in intelligent knowledge-based systems, Comp. Inf. Syst., ver.1.0, 1993.
    • (1993) Comp. Inf. Syst.
    • Bowerman, C.1
  • 81
    • 84887357084 scopus 로고
    • Software sensors and adaptive control in biotechnology
    • Paris
    • Dochain, D., Software sensors and adaptive control in biotechnology, in Proc. ACoFoP III, Paris, p. 12, 1994.
    • (1994) Proc. ACoFoP III , pp. 12
    • Dochain, D.1
  • 82
    • 85057255814 scopus 로고
    • Software sensors: On-line estimation of the specific growth rate in microbial reactors
    • Belgian Society of Industrial Chemistry
    • Dochain, D. et al., Software sensors: on-line estimation of the specific growth rate in microbial reactors, in Proc. J. de la Biotech., Belgian Society of Industrial Chemistry, 1985.
    • (1985) Proc. J. de la Biotech.
    • Dochain, D.1
  • 83
    • 0002432565 scopus 로고
    • Multivariate adaptive regression splines
    • Friedman, J.H., Multivariate adaptive regression splines, The Analysis of Statistics, 19, 1, 1, 1991.
    • (1991) The Analysis of Statistics , vol.19 , Issue.1 , pp. 1
    • Friedman, J.H.1
  • 84
    • 0024270948 scopus 로고
    • Role of quality control in biotechnology: An analytical perspective
    • Garnick, R.L., Solli, N.J., and Papa, P.A., Role of quality control in biotechnology: An analytical perspective, Anal. Chem., 60, 2546, 1988.
    • (1988) Anal. Chem. , vol.60 , pp. 2546
    • Garnick, R.L.1    Solli, N.J.2    Papa, P.A.3
  • 86
    • 0028268852 scopus 로고
    • On the principles of fuzzy networks
    • Gupta, M.M. and Rao, D.H., On the principles of fuzzy networks, Fuzzy Sets and Systems, 61, 1, 1994.
    • (1994) Fuzzy Sets and Systems , vol.61 , pp. 1
    • Gupta, M.M.1    Rao, D.H.2
  • 87
    • 0006166069 scopus 로고
    • The formation of acetoin and diacetyl during fermentation and the levels found in wine
    • Guymon, J. and Crowell, E., The formation of acetoin and diacetyl during fermentation and the levels found in wine, Am. J. Enology and Viticulture, 16, 2, 85, 1965.
    • (1965) Am. J. Enology and Viticulture , vol.16 , Issue.2 , pp. 85
    • Guymon, J.1    Crowell, E.2
  • 88
    • 84976764087 scopus 로고
    • The state of the knowledge-based systems
    • Hayes-Roth, F. and Jacobstein, N., The state of the knowledge-based systems, Comm. ACM, 37, 3, 27, 1994.
    • (1994) Comm. ACM , vol.37 , Issue.3 , pp. 27
    • Hayes-Roth, F.1    Jacobstein, N.2
  • 89
    • 0024715980 scopus 로고
    • State estimators (observers) for the on-line estimation of non-measurable process variables
    • Heijden, van der, Reinier, T.J.M. et al., State estimators (observers) for the on-line estimation of non-measurable process variables, Trends Biotech., 7, 8, 205, 1989.
    • (1989) Trends Biotech. , vol.7 , Issue.8 , pp. 205
    • Heijden, V.D.1    Reinier, T.J.M.2
  • 90
    • 0027601884 scopus 로고
    • ANFIS: Adaptive network-based fuzzy inference systems
    • Jang, J.-S.R., ANFIS: Adaptive network-based fuzzy inference systems, IEEE Trans. Syst. Man and Cybern., 23, 665, 1993.
    • (1993) IEEE Trans. Syst. Man and Cybern. , vol.23 , pp. 665
    • Jang, J.-S.R.1
  • 91
    • 85121203554 scopus 로고
    • Fuzzy modelling using generalized neural networks and Kalman filter algorithm
    • Jang, J.-S.R., Fuzzy modelling using generalized neural networks and Kalman filter algorithm, in Proc. 9-th Nat. Conf. Artif. Intell. (AAAI’91), 762, 1991.
    • (1991) Proc. 9-th Nat. Conf. Artif. Intell. (AAAI’91) , pp. 762
    • Jang, J.-S.R.1
  • 92
    • 0029273384 scopus 로고
    • Neuro-fuzzy modeling and control
    • Jang, J.-S.R. and Sun, C.T., Neuro-fuzzy modeling and control, in Proc. IEEE, 83, 3, 379, 1995.
    • (1995) Proc. IEEE , vol.83 , Issue.3 , pp. 379
    • Jang, J.-S.R.1    Sun, C.T.2
  • 94
    • 0026449753 scopus 로고
    • Comparison of feed-forward and recurrent neural networks for bioprocess state estimation
    • Elsinore, Denmark
    • Karim, M. and Rivera, S., Comparison of feed-forward and recurrent neural networks for bioprocess state estimation, in Proc. ESCAPE-1, Elsinore, Denmark, 377, 1992.
    • (1992) Proc. ESCAPE-1 , pp. 377
    • Karim, M.1    Rivera, S.2
  • 95
    • 0024640272 scopus 로고
    • Computational biology for biotechnology, part I: The role of the computational infrastructure
    • Kingsbury, D.T., Computational biology for biotechnology, part I: The role of the computational infrastructure, Trends Biotech., 7, 4, 82, 1989.
    • (1989) Trends Biotech. , vol.7 , Issue.4 , pp. 82
    • Kingsbury, D.T.1
  • 97
    • 84949107417 scopus 로고    scopus 로고
    • Neural network modelling and predictive control of yeast starter production in champagne
    • European Control Conference '97
    • Latrille, E., Teissier, P., Perret, B., Barille, J.M., and Corrieu, G., Neural network modelling and predictive control of yeast starter production in champagne, in CD-Proc. ECC’97, European Control Conference '97, 1997.
    • (1997) CD-Proc. ECC’97
    • Latrille, E.1    Teissier, P.2    Perret, B.3    Barille, J.M.4    Corrieu, G.5
  • 98
    • 0028369322 scopus 로고
    • Reinforcement structure/parameter learning for neural network based fuzzy logic control systems
    • Lin, C.T. and Lee, C.S.G., Reinforcement structure/parameter learning for neural network based fuzzy logic control systems, IEEE Trans. Fuzzy Syst., 2, 1, 46, 1994.
    • (1994) IEEE Trans. Fuzzy Syst. , vol.2 , Issue.1 , pp. 46
    • Lin, C.T.1    Lee, C.S.G.2
  • 99
    • 0029194827 scopus 로고
    • Fuzzy-neural-net-based inferential control for a high-purity distillation column
    • Luo, R.F., Fuzzy-neural-net-based inferential control for a high-purity distillation column, Control Eng.Practice, 3, 241, 1995.
    • (1995) Control Eng.Practice , vol.3 , pp. 241
    • Luo, R.F.1
  • 100
    • 0017703889 scopus 로고
    • Application of fuzzy logic to approximate reasoning using linguistic systems
    • Mamdani, E.H., Application of fuzzy logic to approximate reasoning using linguistic systems, Fuzzy Sets and Systems, 26, 1182, 1977.
    • (1977) Fuzzy Sets and Systems , vol.26 , pp. 1182
    • Mamdani, E.H.1
  • 101
    • 0344680184 scopus 로고
    • The kinetics of yeast growth and sugar utilization in tirage-the influence of different methods of starter culture preparation and inoculum levels
    • Monk, P. and Storer, R., The kinetics of yeast growth and sugar utilization in tirage-the influence of different methods of starter culture preparation and inoculum levels, Am. J. Enology andViticulture, 37, 1, 71, 1986.
    • (1986) Am. J. Enology andViticulture , vol.37 , Issue.1 , pp. 71
    • Monk, P.1    Storer, R.2
  • 102
    • 0025898036 scopus 로고
    • Knowledge-based system in modeling and control for biotechnological processes
    • Pergamon, Elmsford, NY
    • Montellano, R. et al., Knowledge-based system in modeling and control for biotechnological processes, in Proc. 11th Triennial World Congress IFAC, USSR, Pergamon, Elmsford, NY, 4, 47, 1991.
    • (1991) Proc. 11th Triennial World Congress IFAC, USSR , vol.4 , pp. 47
    • Montellano, R.1
  • 103
    • 85057289925 scopus 로고
    • Combining neural and fuzzy techniques in monitoring and control of manufacturing processes
    • Banyasz, C.S., Ed., Hungary
    • Monostori, L., Combining neural and fuzzy techniques in monitoring and control of manufacturing processes, in Proc. 2nd IFAC Symp. Intell. Compon. Instr. Control App.-SICICA’94, Banyasz, C.S., Ed., Hungary, 199, 1994.
    • (1994) Proc. 2nd IFAC Symp. Intell. Compon. Instr. Control App.-SICICA’94 , pp. 199
    • Monostori, L.1
  • 105
    • 0024122721 scopus 로고
    • Comparison of estimation methods for biotechnological processes
    • Pons, M.N. et al., Comparison of estimation methods for biotechnological processes, Chem. Eng. Sci., 43, 1909, 1988.
    • (1988) Chem. Eng. Sci. , vol.43 , pp. 1909
    • Pons, M.N.1
  • 106
    • 0029759773 scopus 로고    scopus 로고
    • Efficient calculation for indirect measurements and a new approach to the theory of indirect measurements
    • Newport Beach, Anaheim, CA
    • Rabinovich, S.G., Efficient calculation for indirect measurements and a new approach to the theory of indirect measurements, in Proc. Measurement Sci. Conf., Newport Beach, Anaheim, CA, 10, 1996.
    • (1996) Proc. Measurement Sci. Conf. , pp. 10
    • Rabinovich, S.G.1
  • 107
    • 52649146256 scopus 로고
    • Recueil des methodes internationales d’analyse des vins et des mouts
    • Paris
    • Recueil des methodes internationales d’analyse des vins et des mouts, in Office International de la Vigne et du Vin, Paris, 1990.
    • (1990) Office International de la Vigne et du Vin
  • 108
    • 0003480294 scopus 로고
    • Trait, d’oenologie sciences et techniques du vin
    • Paris, Dunod
    • Ribereau-Gayon, J. et al., Trait, d’oenologie sciences et techniques du vin, Analyse et contr’le des vins, 1, Paris, Dunod, 1972.
    • (1972) Analyse et contr’le des vins , pp. 1
    • Ribereau-Gayon, J.1
  • 109
  • 110
    • 84867012227 scopus 로고
    • Method for yeast culture preparation for sparkling wine manufacture
    • SSSR
    • Sarishvili, N.G., Vizelman, B., and Balobina, V.L., Method for yeast culture preparation for sparkling wine manufacture, Vinodelie i vinogradarstvo, SSSR, 1, 10, 1978.
    • (1978) Vinodelie i vinogradarstvo , vol.1 , pp. 10
    • Sarishvili, N.G.1    Vizelman, B.2    Balobina, V.L.3
  • 112
    • 0013965884 scopus 로고
    • Bacterial growth as an optimal process
    • Swanson, C.H. et al., Bacterial growth as an optimal process, J. Theoret. Biol., 12, 2, 228, 1966.
    • (1966) J. Theoret. Biol. , vol.12 , Issue.2 , pp. 228
    • Swanson, C.H.1
  • 113
    • 0025701454 scopus 로고
    • On-line prediction of fermentation variables using neural nets
    • Thibault, J., Breusegem, V. van, and Cheruy, A., On-line prediction of fermentation variables using neural nets, Biotech.and Bioeng., 36, 1041, 1990.
    • (1990) Biotech.and Bioeng. , vol.36 , pp. 1041
    • Thibault, J.1    Breusegem, V.V.2    Cheruy, A.3
  • 114
    • 0030086853 scopus 로고    scopus 로고
    • Standard error estimates for rates of change from indirect measurements
    • Thomas, J.P. andWei, R.P., Standard error estimates for rates of change from indirect measurements, Technometrics, 38, 1, 59, 1996.
    • (1996) Technometrics , vol.38 , Issue.1 , pp. 59
    • Thomas, J.P.1    Wei, R.P.2
  • 115
    • 0000257826 scopus 로고
    • Aneuro-fuzzy neuron and its application to fuzzy system identification and prediction of the system behavior
    • Yamakawa, T., Aneuro-fuzzy neuron and its application to fuzzy system identification and prediction of the system behavior, in Proc. 2nd Int. Conf. Fuzzy Logic and NN (IIZKA’92), 477, 1992.
    • (1992) Proc. 2nd Int. Conf. Fuzzy Logic and NN (IIZKA’92) , pp. 477
    • Yamakawa, T.1
  • 117
    • 0028460607 scopus 로고
    • Development of inferential process models using PLS
    • Kresta, J.V., Marlin, T.E., and MacGregor, J.F., Development of inferential process models using PLS, Comput. Chem. Eng., 18, 597-11, 1994.
    • (1994) Comput. Chem. Eng. , vol.18 , pp. 511-597
    • Kresta, J.V.1    Marlin, T.E.2    MacGregor, J.F.3
  • 118
    • 12444287191 scopus 로고    scopus 로고
    • Multi-layer perceptron based modelling of nonlinear systems
    • Lightbody, G. and Irwin, G.W., Multi-layer perceptron based modelling of nonlinear systems, Fuzzy Sets and Systems, 79, 93-112, 1996.
    • (1996) Fuzzy Sets and Systems , vol.79 , pp. 93-112
    • Lightbody, G.1    Irwin, G.W.2
  • 119
    • 0029754258 scopus 로고    scopus 로고
    • Development of a soft sensor for particle size monitoring
    • Villar, R.G.D., Thibault, J., and Villar, R.D., Development of a soft sensor for particle size monitoring, Minerals Eng., 9(1), 55-72, 1996.
    • (1996) Minerals Eng. , vol.9 , Issue.1 , pp. 55-72
    • Villar, R.G.D.1    Thibault, J.2    Villar, R.D.3
  • 120
    • 0032584917 scopus 로고    scopus 로고
    • Application of radial basis function and feedforward artificial neural networks to the Escherichia Coli fermentation process
    • Warnes, M.R. et al., Application of radial basis function and feedforward artificial neural networks to the Escherichia Coli fermentation process, Neurocomputing, 20, 67, 1998.
    • (1998) Neurocomputing , vol.20 , pp. 67
    • Warnes, M.R.1
  • 121
    • 0025010309 scopus 로고
    • Use of neural nets for dynamic modelling and control of chemical process systems
    • Bhat, N. and McAvoy, T.J., Use of neural nets for dynamic modelling and control of chemical process systems, Comput. Chem. Eng., 14, 573-583, 1990.
    • (1990) Comput. Chem. Eng. , vol.14 , pp. 573-583
    • Bhat, N.1    McAvoy, T.J.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.