-
1
-
-
47249112957
-
D́etection d'anomalies utilisant un langage de r̀egle de qualit́e
-
Hermes Science Publications
-
E. H. Alikacem and H. A. Sahraoui. D́etection d'anomalies utilisant un langage de r̀egle de qualit́e. In LMO. Hermes Science Publications, 2006.
-
(2006)
LMO
-
-
Alikacem, E.H.1
Sahraoui, H.A.2
-
2
-
-
34547825561
-
An efficient alternative to svm based recursive feature elimination with applications in natural language processing and bioinformatics
-
A. Sattar and B.-h. Kang, editors, AI 2006:, Springer Berlin Heidelberg
-
J. Bedo, C. Sanderson, and A. Kowalczyk. An efficient alternative to svm based recursive feature elimination with applications in natural language processing and bioinformatics. In A. Sattar and B.-h. Kang, editors, AI 2006: Advances in Artificial Intelligence, volume 4304 of Lecture Notes in Computer Science, pages 170-180. Springer Berlin Heidelberg, 2006.
-
(2006)
Advances in Artificial Intelligence, volume 4304 of Lecture Notes in Computer Science
, pp. 170-180
-
-
Bedo, J.1
Sanderson, C.2
Kowalczyk, A.3
-
3
-
-
57349144427
-
Selecting good expansion terms for pseudo-relevance feedback
-
Singapore, July 20-24, ACM, 2008
-
G. Cao, J.-Y. Nie, J. Gao, and S. Robertson. Selecting good expansion terms for pseudo-relevance feedback. In Proceedings of the 31st Annual International ACM SIGIR Conference on Research and Development in Information Retrieval, SIGIR 2008, Singapore, July 20-24, 2008, pages 243-250. ACM, 2008.
-
(2008)
Proceedings of the 31st Annual International ACM SIGIR Conference on Research and Development in Information Retrieval, SIGIR 2008
, pp. 243-250
-
-
Cao, G.1
Nie, J.-Y.2
Gao, J.3
Robertson, S.4
-
5
-
-
34249753618
-
Support-vector networks
-
10.1007/BF00994018
-
C. Cortes and V. Vapnik. Support-vector networks. Machine Learning, 20:273-297, 1995. 10.1007/BF00994018.
-
(1995)
Machine Learning
, vol.20
, pp. 273-297
-
-
Cortes, C.1
Vapnik, V.2
-
7
-
-
78649773557
-
Deviance from perfection is a better criterion than closeness to evil when identifying risky code
-
New York, NY, USA, ACM
-
M. Kessentini, S. Vaucher, and H. Sahraoui. Deviance from perfection is a better criterion than closeness to evil when identifying risky code. In Proceedings of the IEEE/ACM international conference on Automated software engineering, ASE '10, pages 113-122, New York, NY, USA, 2010. ACM.
-
(2010)
Proceedings of the IEEE/ACM International Conference on Automated Software Engineering, ASE '10
, pp. 113-122
-
-
Kessentini, M.1
Vaucher, S.2
Sahraoui, H.3
-
9
-
-
42549094431
-
Classifying software changes: Clean or buggy?
-
S. Kim, E. J. W. Jr., and Y. Zhang. Classifying software changes: Clean or buggy? IEEE Trans. Software Eng., 34(2):181-196, 2008.
-
(2008)
IEEE Trans. Software Eng.
, vol.34
, Issue.2
, pp. 181-196
-
-
Kim, S.1
Jr., E.J.W.2
Zhang, Y.3
-
10
-
-
70349702831
-
Visualization-based analysis of quality for large-scale software systems
-
New York, NY, USA, ACM
-
G. Langelier, H. Sahraoui, and P. Poulin. Visualization-based analysis of quality for large-scale software systems. In Proceedings of the 20th IEEE/ACM international Conference on Automated software engineering, ASE '05, pages 214-223, New York, NY, USA, 2005. ACM.
-
(2005)
Proceedings of the 20th IEEE/ACM International Conference on Automated Software Engineering, ASE '05
, pp. 214-223
-
-
Langelier, G.1
Sahraoui, H.2
Poulin, P.3
|