메뉴 건너뛰기




Volumn , Issue , 2012, Pages 1886-1893

Decentralized particle filter for joint individual-group tracking

Author keywords

[No Author keywords available]

Indexed keywords

DATA SETS; PARTICLE FILTER; PARTICLE FILTERING; SPLIT-AND-MERGE; STATE SPACE;

EID: 84866719959     PISSN: 10636919     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/CVPR.2012.6247888     Document Type: Conference Paper
Times cited : (84)

References (27)
  • 1
    • 84866692179 scopus 로고    scopus 로고
    • Collaborative particle filters for group tracking
    • L. Bazzani, M. Cristani, and V. Murino. Collaborative particle filters for group tracking. In IEEE ICIP, 2010.
    • (2010) IEEE ICIP
    • Bazzani, L.1    Cristani, M.2    Murino, V.3
  • 2
    • 47649110844 scopus 로고    scopus 로고
    • Evaluating multiple object tracking performance: The clear mot metrics
    • Jan.
    • K. Bernardin and R. Stiefelhagen. Evaluating multiple object tracking performance: the clear mot metrics. Journal on Image and Video Processing, pages 1-10, Jan. 2008.
    • (2008) Journal on Image and Video Processing , pp. 1-10
    • Bernardin, K.1    Stiefelhagen, R.2
  • 3
    • 0026967479 scopus 로고
    • A survey of image registration techniques
    • December
    • L. Brown. A survey of image registration techniques. ACM Comput. Surv., 24:325-376, December 1992.
    • (1992) ACM Comput. Surv. , vol.24 , pp. 325-376
    • Brown, L.1
  • 4
    • 84866665402 scopus 로고    scopus 로고
    • Probabilistic grouplevel motion analysis and scenario recognition
    • M. Chang, N. Krahnstoever, andW. Ge. Probabilistic grouplevel motion analysis and scenario recognition. In IEEE ICCV, 2011.
    • (2011) IEEE ICCV
    • Chang, M.1    Krahnstoever, N.2    Ge, W.3
  • 5
    • 78651368868 scopus 로고    scopus 로고
    • Decentralized particle filter with arbitrary state decomposition
    • T. Chen, T. Schon, H. Ohlsson, and L. Ljung. Decentralized particle filter with arbitrary state decomposition. IEEE Trans. on Signal Processing, 59(2):465-478, 2011.
    • (2011) IEEE Trans. on Signal Processing , vol.59 , Issue.2 , pp. 465-478
    • Chen, T.1    Schon, T.2    Ohlsson, H.3    Ljung, L.4
  • 6
    • 77953176013 scopus 로고    scopus 로고
    • What are they doing?: Collective activity classification using spatio-temporal relationship among people
    • W. Choi, K. Shahid, and S. Savarese. What are they doing?: Collective activity classification using spatio-temporal relationship among people. In International Workshop on Visual Surveillance, pages 1282-1289, 2009.
    • (2009) International Workshop on Visual Surveillance , pp. 1282-1289
    • Choi, W.1    Shahid, K.2    Savarese, S.3
  • 9
    • 0017953820 scopus 로고
    • A cluster separation measure
    • D. Davies and D. Bouldin. A cluster separation measure. IEEE Trans. on PAMI, (2):224-227, 1979.
    • (1979) IEEE Trans. on PAMI , Issue.2 , pp. 224-227
    • Davies, D.1    Bouldin, D.2
  • 10
    • 79952672429 scopus 로고    scopus 로고
    • Tracking of extended objects and group targets using random matrices
    • M. Feldmann, D. Fränken, and W. Koch. Tracking of extended objects and group targets using random matrices. IEEE Trans. on Signal Processing, 59:1409-1420, 2011.
    • (2011) IEEE Trans. on Signal Processing , vol.59 , pp. 1409-1420
    • Feldmann, M.1    Fränken, D.2    Koch, W.3
  • 11
    • 84866691142 scopus 로고    scopus 로고
    • Vision-based analysis of small groups in pedestrian crowds
    • PrePrints
    • W. Ge, R. Collins, and R. Ruback. Vision-based analysis of small groups in pedestrian crowds. IEEE Trans. on PAMI, 99(PrePrints), 2011.
    • (2011) IEEE Trans. on PAMI , vol.99
    • Ge, W.1    Collins, R.2    Ruback, R.3
  • 12
    • 5044230177 scopus 로고    scopus 로고
    • Probabilistic data association methods in visual tracking of groups
    • G. Gennari and G. Hager. Probabilistic data association methods in visual tracking of groups. In CVPR, 2004.
    • (2004) CVPR
    • Gennari, G.1    Hager, G.2
  • 13
    • 79952644978 scopus 로고    scopus 로고
    • Group object structure and state estimation with evolving networks and monte carlo methods. Signal Processing
    • april
    • A. Gning, L. Mihaylova, S. Maskell, S. Pang, and S. Godsill. Group object structure and state estimation with evolving networks and monte carlo methods. Signal Processing, IEEE Transactions on, 59(4):1383-1396, april 2011.
    • (2011) IEEE Transactions on , vol.59 , Issue.4 , pp. 1383-1396
    • Gning, A.1    Mihaylova, L.2    Maskell, S.3    Pang, S.4    Godsill, S.5
  • 14
    • 0032136153 scopus 로고    scopus 로고
    • Condensation: Conditional density propagation for visual tracking
    • M. Isard and A. Blake. Condensation: Conditional density propagation for visual tracking. Int. J. of Computer Vision, 29:5-28, 1998.
    • (1998) Int. J. of Computer Vision , vol.29 , pp. 5-28
    • Isard, M.1    Blake, A.2
  • 15
    • 84857630996 scopus 로고    scopus 로고
    • Multi-model hypothesis group tracking and group size estimation
    • B. Lau, K. Arras, and W. Burgard. Multi-model hypothesis group tracking and group size estimation. I. J. Social Robotics, 2(1):19-30, 2010.
    • (2010) I. J. Social Robotics , vol.2 , Issue.1 , pp. 19-30
    • Lau, B.1    Arras, K.2    Burgard, W.3
  • 16
    • 34047210162 scopus 로고    scopus 로고
    • A lattice-based MRF model for dynamic near-regular texture tracking
    • W.-C. Lin and Y. Liu. A lattice-based MRF model for dynamic near-regular texture tracking. IEEE Trans. on PAMI, 29(5):777-792, 2007.
    • (2007) IEEE Trans. on PAMI , vol.29 , Issue.5 , pp. 777-792
    • Lin, W.-C.1    Liu, Y.2
  • 18
    • 77957936653 scopus 로고    scopus 로고
    • Robust tracking of spatial related components
    • T. Mauthner, M. Donoser, and H. Bischof. Robust tracking of spatial related components. In ICPR, pages 1-4, 2008.
    • (2008) ICPR , pp. 1-4
    • Mauthner, T.1    Donoser, M.2    Bischof, H.3
  • 20
    • 35048849881 scopus 로고    scopus 로고
    • A boosted particle filter: Multitarget detection and tracking
    • K. Okuma, A. Taleghani, N. D. Freitas, J. J. Little, and D. G. Lowe. A boosted particle filter: Multitarget detection and tracking. In ECCV, pages 28-39, 2004.
    • (2004) ECCV , pp. 28-39
    • Okuma, K.1    Taleghani, A.2    Freitas, N.D.3    Little, J.J.4    Lowe, D.G.5
  • 22
    • 78149306473 scopus 로고    scopus 로고
    • Improving data association by joint modeling of pedestrian trajectories and groupings
    • S. Pellegrini, A. Ess, and L. V. Gool. Improving data association by joint modeling of pedestrian trajectories and groupings. In ECCV, pages 452-465, 2010.
    • (2010) ECCV , pp. 452-465
    • Pellegrini, S.1    Ess, A.2    Gool, L.V.3
  • 23
    • 77953225589 scopus 로고    scopus 로고
    • You'll never walk alone: Modeling social behavior for multi-target tracking
    • S. Pellegrini, A. Ess, K. Schindler, and L. van Gool. You'll never walk alone: Modeling social behavior for multi-target tracking. In ICCV, 2009.
    • (2009) ICCV
    • Pellegrini, S.1    Ess, A.2    Schindler, K.3    Van Gool, L.4
  • 25
    • 34147189525 scopus 로고    scopus 로고
    • Tracking a variable number of human groups in video using probability hypothesis density
    • Y.-D. Wang, J.-K. Wu, A. A. Kassim, and W.-M. Huang. Tracking a variable number of human groups in video using probability hypothesis density. In ICPR, 2006.
    • (2006) ICPR
    • Wang, Y.-D.1    Wu, J.-K.2    Kassim, A.A.3    Huang, W.-M.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.