메뉴 건너뛰기




Volumn , Issue , 2012, Pages 988-995

Graph-based detection, segmentation & characterization of brain tumors

Author keywords

[No Author keywords available]

Indexed keywords

BRAIN TUMORS; COMPUTATIONAL LOADS; DATA SETS; GRAPH-BASED DETECTION; GRAPHICAL MODEL; IMAGE-BASED CLASSIFICATION; LOW-GRADE GLIOMAS; OBJECTIVE FUNCTIONS; PRIOR KNOWLEDGE; RELIABLE DETECTION; SECOND LAYER; SPARSE GRAPHS; SPATIAL POSITIONS; SPATIAL SMOOTHNESS; TUMOR SEGMENTATION;

EID: 84866708703     PISSN: 10636919     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/CVPR.2012.6247775     Document Type: Conference Paper
Times cited : (22)

References (16)
  • 3
    • 2642540835 scopus 로고    scopus 로고
    • Preferential brain locations of low-grade gliomas
    • Jun
    • H. Duffau and L. Capelle. Preferential brain locations of low-grade gliomas. Cancer, 100:2622-2626, Jun 2004.
    • (2004) Cancer , vol.100 , pp. 2622-2626
    • Duffau, H.1    Capelle, L.2
  • 4
    • 84941155240 scopus 로고
    • Well separated clusters and optimal fuzzypartitions
    • J. C. Dunn. Well separated clusters and optimal fuzzypartitions. Journal of Cybernetics, 4:95-104, 1974.
    • (1974) Journal of Cybernetics , vol.4 , pp. 95-104
    • Dunn, J.C.1
  • 5
    • 0034164230 scopus 로고    scopus 로고
    • Additive logistic regression: A statistical view of boosting
    • J. Friedman, T. Hastie, and R. Tibshirani. Additive logistic regression: a statistical view of boosting. The Annals of Statistics, 38(2):337?407, 2000.
    • (2000) The Annals of Statistics , vol.38 , Issue.2 , pp. 337-407
    • Friedman, J.1    Hastie, T.2    Tibshirani, R.3
  • 7
    • 84858767528 scopus 로고    scopus 로고
    • Clustering via lp-based stabilities
    • N. Komodakis, N. Paragios, and G. Tziritas. Clustering via lp-based stabilities. In NIPS, pages 865-872, 2008.
    • (2008) NIPS , pp. 865-872
    • Komodakis, N.1    Paragios, N.2    Tziritas, G.3
  • 8
    • 52949110978 scopus 로고    scopus 로고
    • Performance vs computational efficiency for optimizing single and dynamic mrfs: Setting the state of the art with primal-dual strategies
    • N. Komodakis, G. Tziritas, and N. Paragios. Performance vs computational efficiency for optimizing single and dynamic mrfs: Setting the state of the art with primal-dual strategies. Computer Vision and Image Understanding, 112(1):14-29, 2008.
    • (2008) Computer Vision and Image Understanding , vol.112 , Issue.1 , pp. 14-29
    • Komodakis, N.1    Tziritas, G.2    Paragios, N.3
  • 10
    • 80055047934 scopus 로고    scopus 로고
    • Boosted metric learning for 3d multi-modal deformable registration
    • F. Michel, M. Bronstein, A. Bronstein, and N. Paragios. Boosted metric learning for 3d multi-modal deformable registration. In ISBI, pages 1209-1214, 2011.
    • (2011) ISBI , pp. 1209-1214
    • Michel, F.1    Bronstein, M.2    Bronstein, A.3    Paragios, N.4
  • 11
    • 33751574210 scopus 로고    scopus 로고
    • Modelbased brain and tumor segmentation
    • N. Moon, E. Bullitt, K. V. Leemput, and G. Gerig. Modelbased brain and tumor segmentation. In ICPR (1), pages 528-531, 2002.
    • (2002) ICPR , Issue.1 , pp. 528-531
    • Moon, N.1    Bullitt, E.2    Leemput, K.V.3    Gerig, G.4
  • 12
    • 0344374438 scopus 로고    scopus 로고
    • On standardizing the mr image intensity scale
    • Dec
    • L. G. Nyul and J. K. Udupa. On standardizing the mr image intensity scale. Magnetic Resonnance in Medicine, 42:1072-1081, Dec 1999.
    • (1999) Magnetic Resonnance in Medicine , vol.42 , pp. 1072-1081
    • Nyul, L.G.1    Udupa, J.K.2
  • 13
    • 82255181970 scopus 로고    scopus 로고
    • Graph based spatial position mapping of low-grade gliomas
    • S. Parisot, H. Duffau, S. Chemouny, and N. Paragios. Graph based spatial position mapping of low-grade gliomas. In MICCAI (2), pages 508-515, 2011.
    • (2011) MICCAI , Issue.2 , pp. 508-515
    • Parisot, S.1    Duffau, H.2    Chemouny, S.3    Paragios, N.4
  • 14
    • 16244404240 scopus 로고    scopus 로고
    • Megalooikonomou. Applying spatial distribution analysis techniques to classification of 3d medical images
    • L. K. O. Pokrajac, Megalooikonomou. Applying spatial distribution analysis techniques to classification of 3d medical images. Artificial Intelligence in Medicine, 33(3):261-280, 2005.
    • (2005) Artificial Intelligence in Medicine , vol.33 , Issue.3 , pp. 261-280
    • Pokrajac, L.K.O.1
  • 15
    • 4444333897 scopus 로고    scopus 로고
    • A brain tumor segmentation framework based on outlier detection
    • M. Prastawa, E. Bullitt, S. Ho, and G. Gerig. A brain tumor segmentation framework based on outlier detection. Medical Image Analysis, 8(3):275-283, 2004.
    • (2004) Medical Image Analysis , vol.8 , Issue.3 , pp. 275-283
    • Prastawa, M.1    Bullitt, E.2    Ho, S.3    Gerig, G.4
  • 16
    • 0023453329 scopus 로고
    • Silhouettes: A graphical aid to the interpretation and validation of cluster analysis
    • P. J. Rousseeuw. Silhouettes: A graphical aid to the interpretation and validation of cluster analysis. Journal of Computational and Applied Mathematics, 20:53-65, 1987.
    • (1987) Journal of Computational and Applied Mathematics , vol.20 , pp. 53-65
    • Rousseeuw, P.J.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.