메뉴 건너뛰기




Volumn 7, Issue 3, 2012, Pages 289-294

A filter based feature selection algorithm using null space of covariance matrix for DNA microarray gene expression data

Author keywords

Cancer classification; Covariance matrix; DNA microarray gene expression data; Feature or gene selection; Filter based method; Null space

Indexed keywords

BANDPASS FILTERS; BIOINFORMATICS; CLASSIFICATION (OF INFORMATION); DNA; FEATURE SELECTION; GENE EXPRESSION;

EID: 84866672652     PISSN: 15748936     EISSN: None     Source Type: Journal    
DOI: 10.2174/157489312802460802     Document Type: Article
Times cited : (24)

References (23)
  • 1
    • 0028806048 scopus 로고
    • Quantitative monitoring of gene expression patterns with a complementary DNA microarray
    • Schena M, Shalon D, Davis RW, Brown PO. Quantitative monitoring of gene expression patterns with a complementary DNA microarray. Science 1995; 270: 467-470.
    • (1995) Science , vol.270 , pp. 467-470
    • Schena, M.1    Shalon, D.2    Davis, R.W.3    Brown, P.O.4
  • 3
    • 0001500753 scopus 로고
    • Pattern recognition and reduction of dimensionality
    • In Krishnaiah P, Kanal L, Eds, North-Holland, Amsterdam
    • Ben-Bassat M. Pattern recognition and reduction of dimensionality. In Krishnaiah P, Kanal L, Eds., Handbook of Statistics II, Vol. 1. North-Holland, Amsterdam.1982; pp. 773-791.
    • (1982) Handbook of Statistics II , vol.1 , pp. 773-791
    • Ben-Bassat, M.1
  • 4
    • 0001778082 scopus 로고
    • Prototype and feature selection by sampling and random mutation hill climbing algorithms. In Proceedings of the Eleventh Int. Conf. on Mach
    • Skalak D. Prototype and feature selection by sampling and random mutation hill climbing algorithms. In Proceedings of the Eleventh Int. Conf. on Mach. Learn. 1994; 293-301.
    • (1994) Learn. , vol.293 , pp. 301
    • Skalak, D.1
  • 6
    • 0036161259 scopus 로고    scopus 로고
    • Gene selection for cancer classification using support vector machines
    • Guyon I, Weston J, Barnhill S, Vapnik V. Gene selection for cancer classification using support vector machines. Mach Learn 2002; 46: 389-422.
    • (2002) Mach Learn , vol.46 , pp. 389-422
    • Guyon, I.1    Weston, J.2    Barnhill, S.3    Vapnik, V.4
  • 7
    • 25144492516 scopus 로고    scopus 로고
    • Efficient feature selection via analysis of relevance and redundancy
    • Yu L, Liu H. Efficient feature selection via analysis of relevance and redundancy. J Mach Learn Res 2004; 5: 1205-1224.
    • (2004) J Mach Learn Res , vol.5 , pp. 1205-1224
    • Yu, L.1    Liu, H.2
  • 8
    • 33746489367 scopus 로고    scopus 로고
    • An assessment of recently published gene expression data analyses: Reporting experimental design and statistical factors
    • Jafari P, Azuaje F. An assessment of recently published gene expression data analyses: reporting experimental design and statistical factors. BMC Med Inform Decision Making 2006; 6: 27.
    • (2006) BMC Med Inform Decision Making , vol.6 , pp. 27
    • Jafari, P.1    Azuaje, F.2
  • 9
    • 33748466311 scopus 로고    scopus 로고
    • Selecting features in microarray classification using ROC curves
    • Mamitsuka H. Selecting features in microarray classification using ROC curves. Patt Recog 2006; 39: 2393-2404.
    • (2006) Patt Recog , vol.39 , pp. 2393-2404
    • Mamitsuka, H.1
  • 10
    • 79957589638 scopus 로고    scopus 로고
    • Strategy of finding optimal number of features on gene expression data
    • SharmaA, Koh CH, Imoto S, Miyano S. Strategy of finding optimal number of features on gene expression data. Electro Lett IEE 2011; 47(8): 480-482.
    • (2011) Electro Lett IEE , vol.47 , Issue.8 , pp. 480-482
    • Sharma, A.1    Koh, C.H.2    Imoto, S.3    Miyano, S.4
  • 11
    • 84868119274 scopus 로고    scopus 로고
    • Null space based feature selection method for gene expression data
    • DOI 10.1007/s13042-011-0061-9
    • Sharma A, Imoto S, Miyano S, Sharma V. Null space based feature selection method for gene expression data. Int J Mach Learn & Cyber 2011; DOI 10.1007/s13042-011-0061-9.
    • (2011) Int J Mach Learn & Cyber
    • Sharma, A.1    Imoto, S.2    Miyano, S.3    Sharma, V.4
  • 12
    • 84859203545 scopus 로고    scopus 로고
    • A top-r feature selection algorithm for microarray gene expression data
    • Sharma A, Imoto S, Miyano S. A top-r feature selection algorithm for microarray gene expression data. IEEE/ACM Trans Comput Biol Bioinform 2012; 9 (3): 754-764.
    • (2012) IEEE/ACM Trans Comput Biol Bioinform , vol.9 , Issue.3 , pp. 754-764
    • Sharma, A.1    Imoto, S.2    Miyano, S.3
  • 13
    • 35748932917 scopus 로고    scopus 로고
    • A review of feature selection techniques in bioinformatics
    • Saeys Y, InzaI, Larranaga P. A review of feature selection techniques in bioinformatics. Bioinformatics 2007; 23(9): 2507-2517.
    • (2007) Bioinformatics , vol.23 , Issue.9 , pp. 2507-2517
    • Saeys, Y.1    InzaI Larranaga, P.2
  • 14
    • 0034730140 scopus 로고    scopus 로고
    • Singular value decomposition for genome-wideexpression data processing and modeling
    • Alter O, Brown PO, Botstein D. Singular value decomposition for genome-wideexpression data processing and modeling. Proc Natl Acad Sci USA 2000; 97(18): 10101-10106.
    • (2000) Proc Natl Acad Sci USA , vol.97 , Issue.18 , pp. 10101-10106
    • Alter, O.1    Brown, P.O.2    Botstein, D.3
  • 15
    • 25444472585 scopus 로고    scopus 로고
    • Pathway level analysis of gene expression using singular valuedecomposition
    • Tomfohr J, Lu J, Kepler TB. Pathway level analysis of gene expression using singular valuedecomposition. BMC Bioinformatics 2005; 6(225).
    • (2005) BMC Bioinformatics , vol.6 , Issue.225
    • Tomfohr, J.1    Lu, J.2    Kepler, T.B.3
  • 16
    • 33751565280 scopus 로고    scopus 로고
    • Solving the Small Sample Size Problem of LDA
    • Huang R, Liu Q, Lu H, Ma S. Solving the Small Sample Size Problem of LDA. Proc ICPR 2002; 3: 29-32.
    • (2002) Proc ICPR , vol.3 , pp. 29-32
    • Huang, R.1    Liu, Q.2    Lu, H.3    Ma, S.4
  • 18
    • 0033569406 scopus 로고    scopus 로고
    • Molecular classification of cancer: Class discovery and class prediction by gene expression monitoring
    • [Data Source: http://datam.i2r.astar. edu.sg/datasets/krbd/]
    • Golub TR, Slonim DK, Tamayo P, et al. Molecular classification of cancer: class discovery and class prediction by gene expression monitoring. Science 1999; 286: 531-537. [Data Source: http://datam.i2r.astar. edu.sg/datasets/krbd/]
    • (1999) Science , vol.286 , pp. 531-537
    • Golub, T.R.1    Slonim, D.K.2    Tamayo, P.3
  • 19
    • 0034954414 scopus 로고    scopus 로고
    • Classification and diagnostic prediction of cancers using gene expression profiling and artificial neural network
    • [Data Source]
    • Khan J, Wei JS, Ringner M, et al. Classification and diagnostic prediction of cancers using gene expression profiling and artificial neural network. Nat Med 2001; 7: 673-679. [Data Source: http://research.nhgri.nih.gov/microarray/Supplement/]
    • (2001) Nat Med , vol.7 , pp. 673-679
    • Khan, J.1    Wei, J.S.2    Ringner, M.3
  • 20
    • 18544375333 scopus 로고    scopus 로고
    • MLL translocations specify a distinct gene expression profile that distinguishes a unique leukemia
    • [Data Source1:] [Data Source2:http://www.broad.mit.edu/cgibin/ cancer/publications/pub_paper.cgi?mode=view&paper_id=63]
    • Armstrong SA, Staunton JE, Silverman LB, et al. MLL translocations specify a distinct gene expression profile that distinguishes a unique leukemia. Nat Genet 2002; 30: 41-47. [Data Source1:http://datam.i2r.a-star.edu.sg/datasets/krbd/] [Data Source2:http://www.broad.mit.edu/cgibin/ cancer/publications/pub_paper.cgi?mode=view&paper_id=63]
    • (2002) Nat Genet , vol.30 , pp. 41-47
    • Armstrong, S.A.1    Staunton, J.E.2    Silverman, L.B.3
  • 21
    • 0036735386 scopus 로고    scopus 로고
    • Translation of microarray data into clinically relevant cancer diagnostic tests using gene expression ratios in lung cancer and mesothelioma
    • [Data Source1:] [Data Source 2: http://www.chestsurg.org]
    • Gordon GJ, Jensen RV, Hsiao L-L, et al. Translation of microarray data into clinically relevant cancer diagnostic tests using gene expression ratios in lung cancer and mesothelioma. Cancer Res 2002; 62: 4963-4967. [Data Source1: http://-datam.i2r.a-star.edu.sg/datasets/krbd/] [Data Source 2: http://www.chestsurg.org]
    • (2002) Cancer Res , vol.62 , pp. 4963-4967
    • Gordon, G.J.1    Jensen, R.V.2    Hsiao, L-L.3
  • 22
    • 0034300875 scopus 로고    scopus 로고
    • A new LDA-based face recognition system which can solve the small sample size problem
    • Chen L-F, Liao H-YM, Ko M-T, Lin J-C, Yu G-J. A new LDA-based face recognition system which can solve the small sample size problem. Patt Recog 2000; 33: 1713-1726.
    • (2000) Patt Recog , vol.33 , pp. 1713-1726
    • Chen, L-F.1    Liao, H-Y.M.2    Ko, M-T.3    Lin, J-C.4    Yu, G-J.5


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.