메뉴 건너뛰기




Volumn , Issue , 2012, Pages 2432-2439

Low level vision via switchable Markov random fields

Author keywords

[No Author keywords available]

Indexed keywords

DE-NOISING; EXPERIMENTAL STUDIES; EXPONENTIAL FAMILY; GRAPHICAL STRUCTURES; HEAVY-TAILS; LOW-LEVEL VISION; MARKOV RANDOM FIELDS; SWITCHABLE; VARIABLE STRUCTURES;

EID: 84866670612     PISSN: 10636919     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/CVPR.2012.6247957     Document Type: Conference Paper
Times cited : (7)

References (27)
  • 1
    • 84866683499 scopus 로고
    • The outlier process: Unifying line processes and robust statistics
    • 2
    • M. Black and A. Rangarajan. The outlier process: Unifying line processes and robust statistics. In Proc. of CVPR, 1994. 2
    • (1994) Proc. of CVPR
    • Black, M.1    Rangarajan, A.2
  • 4
    • 33645653318 scopus 로고    scopus 로고
    • A review of image denoising algorithms, with a new one
    • 1, 2
    • a. Buades, B. Coll, and J. M. Morel. A Review of Image Denoising Algorithms, with a New One. Multiscale Modeling & Simulation, 4(2):490, 2005. 1, 2
    • (2005) Multiscale Modeling & Simulation , vol.4 , Issue.2 , pp. 490
    • Buades, A.1    Coll, B.2    Morel, J.M.3
  • 6
    • 41549098470 scopus 로고    scopus 로고
    • Nonlocal linear image regularization and supervised segmentation
    • 1, 2, 6
    • G. Gilboa and S. Osher. Nonlocal Linear Image Regularization and Supervised Segmentation. Multiscale Modeling and Simulation, 6(2):595, 2007. 1, 2, 6
    • (2007) Multiscale Modeling and Simulation , vol.6 , Issue.2 , pp. 595
    • Gilboa, G.1    Osher, S.2
  • 7
  • 8
    • 77956004109 scopus 로고    scopus 로고
    • Energy minimization for linear envelope MRFs
    • 1
    • P. Kohli and M. Kumar. Energy Minimization for Linear Envelope MRFs. In Proc. of CVPR'10, 2010. 1
    • (2010) Proc. of CVPR'10
    • Kohli, P.1    Kumar, M.2
  • 9
    • 76849098030 scopus 로고    scopus 로고
    • Learning for optical flow using stochastic optimization
    • 1, 2
    • Y. Li and D. Huttenlocher. Learning for Optical Flow Using Stochastic Optimization. In Proc. of ECCV'08, 2008. 1, 2
    • (2008) Proc. of ECCV'08
    • Li, Y.1    Huttenlocher, D.2
  • 11
    • 0034361296 scopus 로고    scopus 로고
    • Adaptive weights smoothing with applications to image restoration
    • 1
    • J. Polzehl and V. G. Spokoiny. Adaptive weights smoothing with applications to image restoration. J. R. Statist. Soc. B, 62:335-354, 2000. 1
    • (2000) J. R. Statist. Soc. B , vol.62 , pp. 335-354
    • Polzehl, J.1    Spokoiny, V.G.2
  • 13
    • 24644467818 scopus 로고    scopus 로고
    • Fields of experts: A framework for learning image priors
    • 1, 2, 6
    • S. Roth and M. J. Black. Fields of Experts: A Framework for Learning Image Priors. In Proc. of CVPR'05, 2005. 1, 2, 6
    • (2005) Proc. of CVPR'05
    • Roth, S.1    Black, M.J.2
  • 14
    • 33645367215 scopus 로고    scopus 로고
    • On the spatial statistics of optical flow
    • 1
    • S. Roth and M. J. Black. On the Spatial Statistics of Optical Flow. In Proc. of ICCV'05, 2005. 1
    • (2005) Proc. of ICCV'05
    • Roth, S.1    Black, M.J.2
  • 16
    • 70450207702 scopus 로고    scopus 로고
    • Learning optimized MAP estimates in continuously-valued MRF models
    • 1
    • K. Samuel and M. Tappen. Learning Optimized MAP Estimates in Continuously-valued MRF Models. In Proc. of CVPR'09, 2009. 1
    • (2009) Proc. of CVPR'09
    • Samuel, K.1    Tappen, M.2
  • 18
    • 77955989583 scopus 로고    scopus 로고
    • A generative perspective on MRFs in low-level vision
    • 1, 2
    • U. Schmidt, Q. Gao, and S. Roth. A Generative Perspective on MRFs in Low-Level Vision. In Proc. of CVPR'10, 2010. 1, 2
    • (2010) Proc. of CVPR'10
    • Schmidt, U.1    Gao, Q.2    Roth, S.3
  • 19
    • 77955989832 scopus 로고    scopus 로고
    • Secrets of optical flow estimation and their principles
    • 5
    • D. Sun, S. Roth, and M. J. Black. Secrets of Optical Flow Estimation and Their Principles. In Proc. of CVPR'10, 2010. 5
    • (2010) Proc. of CVPR'10
    • Sun, D.1    Roth, S.2    Black, M.J.3
  • 20
    • 51949117434 scopus 로고    scopus 로고
    • Locally adaptive learning for translation-variant MRF image priors
    • 1
    • M. Tanaka and M. Okutomi. Locally Adaptive Learning for Translation-Variant MRF Image Priors. In Proc. of CVPR'08, 2008. 1
    • (2008) Proc. of CVPR'08
    • Tanaka, M.1    Okutomi, M.2
  • 21
    • 34948890052 scopus 로고    scopus 로고
    • Utilizing variational optimization to learn Markov random fields
    • 1, 2
    • M. F. Tappen. Utilizing Variational Optimization to Learn Markov Random Fields. In Proc. of ICCV'07, 2007. 1, 2
    • (2007) Proc. of ICCV'07
    • Tappen, M.F.1
  • 22
    • 34948821220 scopus 로고    scopus 로고
    • Learning Gaussian conditional random fields for low- level vision
    • 1, 2
    • M. F. Tappen, C. Liu, E. H. Adelson, and W. T. Freeman. Learning Gaussian Conditional Random Fields for Low- Level Vision. In Proc. of CVPR'07, 2007. 1, 2
    • (2007) Proc. of CVPR'07
    • Tappen, M.F.1    Liu, C.2    Adelson, E.H.3    Freeman, W.T.4
  • 23
    • 0032319446 scopus 로고    scopus 로고
    • Bilateral filtering for gray and color images
    • 1, 2
    • C. Tomasi and R. Manduchi. Bilateral filtering for gray and color images. In Proc. of ICCV'98, 1998. 1, 2
    • (1998) Proc. of ICCV'98
    • Tomasi, C.1    Manduchi, R.2
  • 24
    • 77953225043 scopus 로고    scopus 로고
    • Joint optimization of segmentation and appearance models
    • 1
    • S. Vicente, V. Kolmogorov, and C. Rother. Joint Optimization of Segmentation and Appearance Models. In Proc. of ICCV'09, 2009. 1
    • (2009) Proc. of ICCV'09
    • Vicente, S.1    Kolmogorov, V.2    Rother, C.3
  • 26
    • 35148861156 scopus 로고    scopus 로고
    • What makes a good model of natural images?
    • 1, 2
    • Y. Weiss and W. T. Freeman. What Makes a Good Model of Natural Images? In Proc. of CVPR'07, 2007. 1, 2
    • (2007) Proc. of CVPR'07
    • Weiss, Y.1    Freeman, W.T.2
  • 27
    • 0032025550 scopus 로고    scopus 로고
    • Filters, random fields and maximum entropy (FRAME): Towards a unified theory for texture modeling
    • 1
    • S.-C. Zhu, Y.-N. Wu, and D. Mumford. Filters, Random Fields and Maximum Entropy (FRAME): Towards a Unified Theory for Texture Modeling. International Journal of Computer Vision, 27(2):107-126, 1998. 1
    • (1998) International Journal of Computer Vision , vol.27 , Issue.2 , pp. 107-126
    • Zhu, S.-C.1    Wu, Y.-N.2    Mumford, D.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.