메뉴 건너뛰기




Volumn , Issue , 2012, Pages 3116-3123

Augmenting deformable part models with irregular-shaped object patches

Author keywords

[No Author keywords available]

Indexed keywords

BACKGROUND CLUTTER; CONDITIONAL RANDOM FIELD; DEFORMABLE OBJECT; ENERGY FUNCTIONS; FLEXIBLE OBJECT; IRREGULAR SHAPE; LARGE DEFORMATIONS; OBJECT DETECTION; OBJECT DETECTORS; STATE-OF-THE-ART METHODS; TOPOLOGICAL STRUCTURE;

EID: 84866660529     PISSN: 10636919     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/CVPR.2012.6248044     Document Type: Conference Paper
Times cited : (16)

References (25)
  • 1
    • 85112851150 scopus 로고    scopus 로고
    • Poselets: Body part detectors trained using 3d human pose annotations
    • 1
    • L. Bourdev and J. Malik. Poselets: Body part detectors trained using 3d human pose annotations. In ICCV, 2009. 1
    • (2009) ICCV
    • Bourdev, L.1    Malik, J.2
  • 2
    • 84866647176 scopus 로고    scopus 로고
    • Active mask hierarchies for object detection
    • 1, 4, 6, 7
    • Y. Chen, L. Zhu, and A. Yuille. Active mask hierarchies for object detection. In ECCV, 2010. 1, 4, 6, 7
    • (2010) ECCV
    • Chen, Y.1    Zhu, L.2    Yuille, A.3
  • 3
    • 34948861136 scopus 로고    scopus 로고
    • Composite models of objects and scenes for category recognition
    • 1
    • D. Crandall and D. Huttenlocher. Composite models of objects and scenes for category recognition. In CVPR, 2007. 1
    • (2007) CVPR
    • Crandall, D.1    Huttenlocher, D.2
  • 4
    • 77956006784 scopus 로고    scopus 로고
    • Attribute-centric recognition for crosscategory generalization
    • 4
    • A. Farhadi, I. Endres, and D. Hoiem. Attribute-centric recognition for crosscategory generalization. In CVPR, 2010. 4
    • (2010) CVPR
    • Farhadi, A.1    Endres, I.2    Hoiem, D.3
  • 5
    • 77955422240 scopus 로고    scopus 로고
    • Object detection with discriminatively trained part based models
    • 1, 5, 6, 7
    • P. Felzenszwalb, R. Girshick, D. McAllester, and D. Ramanan. Object detection with discriminatively trained part based models. PAMI, 2010. 1, 5, 6, 7
    • (2010) PAMI
    • Felzenszwalb, P.1    Girshick, R.2    McAllester, D.3    Ramanan, D.4
  • 6
    • 4644354464 scopus 로고    scopus 로고
    • Pictorial structures for object recognition
    • 1
    • P. Felzenszwalb and D. Huttenlocher. Pictorial structures for object recognition. IJCV, 2005. 1
    • (2005) IJCV
    • Felzenszwalb, P.1    Huttenlocher, D.2
  • 7
    • 35148867545 scopus 로고    scopus 로고
    • Towards scalable representations of object categories: Learning a hierarchy of parts
    • 1
    • S. Fidler and A. Leonardis. Towards scalable representations of object categories: Learning a hierarchy of parts. In CVPR, 2007. 1
    • (2007) CVPR
    • Fidler, S.1    Leonardis, A.2
  • 8
    • 85067032737 scopus 로고    scopus 로고
    • On feature combination for multiclass object classification
    • 3
    • P. Gehler and S. Nowozin. On feature combination for multiclass object classification. In ICCV, 2009. 3
    • (2009) ICCV
    • Gehler, P.1    Nowozin, S.2
  • 11
    • 84858716911 scopus 로고    scopus 로고
    • Region-based segmentation and object detection
    • 2
    • S. Gould, T. Gao, and D. Koller. Region-based segmentation and object detection. In NIPS, 2009. 2
    • (2009) NIPS
    • Gould, S.1    Gao, T.2    Koller, D.3
  • 13
    • 33750129298 scopus 로고    scopus 로고
    • Convergent tree-reweighted message passing for energy minimization
    • 5
    • V. Kolmogorov. Convergent tree-reweighted message passing for energy minimization. PAMI, 2006. 5
    • (2006) PAMI
    • Kolmogorov, V.1
  • 15
    • 77953225585 scopus 로고    scopus 로고
    • Associative hierarchical crfs for object class image segmentation
    • 2
    • L. Ladicky, C. Russell, P. Kohli, and P. H. S. Torr. Associative hierarchical crfs for object class image segmentation. In ICCV, 2009. 2
    • (2009) ICCV
    • Ladicky, L.1    Russell, C.2    Kohli, P.3    Torr, P.H.S.4
  • 17
    • 51949086303 scopus 로고    scopus 로고
    • Combining appearance models and markov random fields for category level object segmentation
    • 2
    • D. Larlus and F. Jurie. Combining appearance models and markov random fields for category level object segmentation. In CVPR, 2008. 2
    • (2008) CVPR
    • Larlus, D.1    Jurie, F.2
  • 20
    • 51949105132 scopus 로고    scopus 로고
    • Lost in quantization: Improving particular object retrieval in large scale image databases
    • 3
    • J. Philbin, O. Chum, M. Isard, J. Sivic, and A. Zisserman. Lost in quantization: Improving particular object retrieval in large scale image databases. In CVPR, 2008. 3
    • (2008) CVPR
    • Philbin, J.1    Chum, O.2    Isard, M.3    Sivic, J.4    Zisserman, A.5
  • 21
    • 77955992170 scopus 로고    scopus 로고
    • Automatic discovery of meaningful object parts with latent CRFs
    • 1, 2
    • P. Schnitzspan, S. Roth, and B. Schiele. Automatic discovery of meaningful object parts with latent CRFs. In CVPR, 2010. 1, 2
    • (2010) CVPR
    • Schnitzspan, P.1    Roth, S.2    Schiele, B.3
  • 22
    • 80052891624 scopus 로고    scopus 로고
    • Contextualizing object detection and classification
    • 6, 7
    • Z. Song, Q. Chen, Z. Huang, Y. Hua, and S. Yan. Contextualizing object detection and classification. In CVPR, 2011. 6, 7
    • (2011) CVPR
    • Song, Z.1    Chen, Q.2    Huang, Z.3    Hua, Y.4    Yan, S.5
  • 24
    • 33845597355 scopus 로고    scopus 로고
    • The layout consistent random field for recognizing and segmenting partially occluded objects
    • 2
    • J. Winn and J. Shotton. The layout consistent random field for recognizing and segmenting partially occluded objects. In CVPR, 2006. 2
    • (2006) CVPR
    • Winn, J.1    Shotton, J.2
  • 25
    • 77955986466 scopus 로고    scopus 로고
    • Latent hierarchical structural learning for object detection
    • 1
    • L. Zhu, Y. Chen, A. Yuille, and W. Freeman. Latent hierarchical structural learning for object detection. In CVPR, 2010. 1
    • (2010) CVPR
    • Zhu, L.1    Chen, Y.2    Yuille, A.3    Freeman, W.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.