메뉴 건너뛰기




Volumn , Issue , 2011, Pages 715-722

Robust unsupervised motion pattern inference from video and applications

Author keywords

[No Author keywords available]

Indexed keywords

FALSE ALARMS; GEOMETRIC STRUCTURE; GROUPING ALGORITHM; MANIFOLD LEARNING; MOTION DIRECTION; MOTION PATTERN; MOVING OBJECTS; MULTIPLE KERNELS; REAL-WORLD SEQUENCES; SPECTRAL CLUSTERING; STATE-OF-THE-ART METHODS; STATIC CAMERAS; TENSOR VOTING;

EID: 84863028588     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/ICCV.2011.6126308     Document Type: Conference Paper
Times cited : (27)

References (22)
  • 3
    • 35148868709 scopus 로고    scopus 로고
    • A lagrangian particle dynamics approach for crowd flow segmentation and stability analysis
    • 2
    • S.Ali andM. Shah. A lagrangian particle dynamics approach for crowd flow segmentation and stability analysis. CVPR, pages 1-6, 2007. 2
    • (2007) CVPR , pp. 1-6
    • Ali, S.1    Shah, M.2
  • 4
    • 56749107053 scopus 로고    scopus 로고
    • Floor fields for tracking in high density crowd scenes
    • 2
    • S. Ali and M. Shah. Floor fields for tracking in high density crowd scenes. ECCV, pages 1-14, 2008. 2
    • (2008) ECCV , pp. 1-14
    • Ali, M.S.1    Shah, M.2
  • 5
    • 33744506087 scopus 로고    scopus 로고
    • Behavioral priors for detection and tracking of pedestrians in video sequences
    • 1
    • G. Antonini, S. V. Martinez, M. Bierlaire, and J. P. Thiran. Behavioral priors for detection and tracking of pedestrians in video sequences. IJCV, 69(2):159-180, 2006. 1
    • (2006) IJCV , vol.69 , Issue.2 , pp. 159-180
    • Antonini, G.1    Martinez, S.V.2    Bierlaire, M.3    Thiran, J.P.4
  • 6
    • 56749156133 scopus 로고    scopus 로고
    • Multi-camera tracking and atypical motion detection with behavioral maps
    • 1
    • J. Berclaz, F. Fleuret, and P. Fua. Multi-camera tracking and atypical motion detection with behavioral maps. ECCV, pages 112-125, 2008. 1
    • (2008) ECCV , pp. 112-125
    • Berclaz, J.1    Fleuret, F.2    Fua, P.3
  • 7
    • 70450184118 scopus 로고    scopus 로고
    • Sparse subspace clustering
    • 3, 6
    • E. Elhamifar and R. Vidal. Sparse subspace clustering. CVPR, pages 2790-2797, 2009. 3, 6
    • (2009) CVPR , pp. 2790-2797
    • Elhamifar, E.1    Vidal, R.2
  • 8
    • 33746576905 scopus 로고    scopus 로고
    • A system for learning statistical motion patterns
    • 1, 2
    • W. Hu, X. Xiao, Z. Fu, D. Xie, T. Tan, and S. Maybank. A system for learning statistical motion patterns. PAMI, 28(9):1450-1464, 2006. 1, 2
    • (2006) PAMI , vol.28 , Issue.9 , pp. 1450-1464
    • Hu, W.1    Xiao, X.2    Fu, Z.3    Xie, D.4    Tan, T.5    Maybank, S.6
  • 9
    • 77956005563 scopus 로고    scopus 로고
    • Tracking with local spatio-temporal motion patterns in extremely crowded scenes
    • 1
    • L. Kratz and K. Nishino. Tracking with local spatio-temporal motion patterns in extremely crowded scenes. CVPR, pages 693-700, 2010. 1
    • (2010) CVPR , pp. 693-700
    • Kratz, L.1    Nishino, K.2
  • 10
    • 78149329864 scopus 로고    scopus 로고
    • A streakline representation of flow in crowded scenes
    • 2
    • R. Mehran, B. Moore, and M. Shah. A streakline representation of flow in crowded scenes. ECCV, pages 439-452, 2010. 2
    • (2010) ECCV , pp. 439-452
    • Mehran, R.1    Moore, B.2    Shah, M.3
  • 11
    • 76749147912 scopus 로고    scopus 로고
    • Dimensionality estimation, manifold learning and function approximation using tensor voting
    • 2, 3, 4
    • P. Mordohai and G. Medioni. Dimensionality estimation, manifold learning and function approximation using tensor voting. JMLR, 11:411-450, 2010. 2, 3, 4
    • (2010) JMLR , vol.11 , pp. 411-450
    • Mordohai, P.1    Medioni, G.2
  • 12
    • 77956007151 scopus 로고    scopus 로고
    • Rasl: Robust alignment by sparse and low-rank decomposition for linearly correlated images
    • 2
    • Y. Peng, A. Ganesh, J. Wright, and Y. Ma. Rasl: Robust alignment by sparse and low-rank decomposition for linearly correlated images. CVPR, pages 763-770, 2010. 2
    • (2010) CVPR , pp. 763-770
    • Peng, Y.1    Ganesh, A.2    Wright, J.3    Ma, Y.4
  • 14
    • 80052901703 scopus 로고    scopus 로고
    • Using 3d scene structure to improve tracking
    • 2, 6, 7
    • J. Prokaj and G. Medioni. Using 3d scene structure to improve tracking. CVPR, pages 1337-1344, 2011. 2, 6, 7
    • (2011) CVPR , pp. 1337-1344
    • Prokaj, J.1    Medioni, G.2
  • 15
    • 77956006563 scopus 로고    scopus 로고
    • Scene understanding by statistical modeling of motion patterns
    • 2, 4
    • I. Saleemi, L. Hartung, andM. Shah. Scene understanding by statistical modeling of motion patterns. CVPR, pages 2069-2076, 2010. 2, 4
    • (2010) CVPR , pp. 2069-2076
    • Saleemi, I.1    Hartung, L.2    Shah, M.3
  • 16
    • 67650450207 scopus 로고    scopus 로고
    • Probabilistic modeling of scene dynamics for applications in visual surveillance
    • 1
    • I. Saleemi, K. Shafique, and M. Shah. Probabilistic modeling of scene dynamics for applications in visual surveillance. PAMI, 31(8):1472-1485, 2009. 1
    • (2009) PAMI , vol.31 , Issue.8 , pp. 1472-1485
    • Saleemi, I.1    Shafique, K.2    Shah, M.3
  • 17
    • 42549164992 scopus 로고    scopus 로고
    • Multiframe motion segmentation with missing data using powerfactorization and GPCA
    • 3, 6
    • R. Vidal, R. Tron, and R. Hartley. Multiframe motion segmentation with missing data using powerfactorization and GPCA. IJCV, 79(1):85-105, 2008. 3, 6
    • (2008) IJCV , vol.79 , Issue.1 , pp. 85-105
    • Vidal, R.1    Tron, R.2    Hartley, R.3
  • 18
    • 34948904825 scopus 로고    scopus 로고
    • Unsupervised activity perception by hierarchical bayesian models
    • 2
    • X. Wang, X. Ma, and E. Grimson. Unsupervised activity perception by hierarchical bayesian models. CVPR, pages 1-8, 2007. 2
    • (2007) CVPR , pp. 1-8
    • Wang, X.1    Ma, X.2    Grimson, E.3
  • 19
    • 33745844069 scopus 로고    scopus 로고
    • Learning semantic scene models by trajectory analysis
    • 1, 2
    • X.Wang, K. Tieu, and E. Grimson. Learning semantic scene models by trajectory analysis. ECCV, pages 110-123, 2006. 1, 2
    • (2006) ECCV , pp. 110-123
    • Wang, X.1    Tieu, K.2    Grimson, E.3
  • 20
    • 33745812742 scopus 로고    scopus 로고
    • A general framework for motion segmentation: Independent, articulated, rigid, non-rigid, degenerate and non-degenerate
    • 3, 6
    • J. Yan and M. Pollefeys. A general framework for motion segmentation: Independent, articulated, rigid, non-rigid, degenerate and non-degenerate. ECCV, pages 94-106, 2006. 3, 6
    • (2006) ECCV , pp. 94-106
    • Yan, J.1    Pollefeys, M.2
  • 21
    • 70450184121 scopus 로고    scopus 로고
    • Motion pattern interpretation and detection
    • 1, 2, 4
    • Q. Yu and G. Medioni. Motion pattern interpretation and detection. CVPR, pages 2671-2678, 2009. 1, 2, 4
    • (2009) CVPR , pp. 2671-2678
    • Yu, Q.1    Medioni, G.2
  • 22
    • 84864027458 scopus 로고    scopus 로고
    • Learning with hypergraphs: Clustering, classification, and embedding
    • 3
    • D. Zhou, J. Huang, and B. Scholkopf. Learning with hypergraphs: Clustering, classification, and embedding. NIPS, pages 1601-1608, 2006. 3
    • (2006) NIPS , pp. 1601-1608
    • Zhou, D.1    Huang, J.2    Scholkopf, B.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.