메뉴 건너뛰기




Volumn 30, Issue 5, 2012, Pages 1261-1270

Application of Relevance Vector Machine for Prediction of Ultimate Capacity of Driven Piles in Cohesionless Soils

Author keywords

Artificial neural network; Cohesionless soil; Pile; Relevance vector machine; Ultimate capacity

Indexed keywords

ARTIFICIAL NEURAL NETWORK MODELS; BAYESIAN FRAMEWORKS; COHESIONLESS SOIL; DRIVEN PILE; PERFORMANCE CRITERION; PREDICTION VARIANCE; RELEVANCE VECTOR MACHINE; ROOT MEAN SQUARE ERRORS; ULTIMATE CAPACITY;

EID: 84866524554     PISSN: 09603182     EISSN: None     Source Type: Journal    
DOI: 10.1007/s10706-012-9539-9     Document Type: Article
Times cited : (27)

References (27)
  • 1
    • 0032430468 scopus 로고    scopus 로고
    • General regression neural networks for driven piles in cohesionless soils
    • Abu Kiefa MA (1998) General regression neural networks for driven piles in cohesionless soils. J Geotech Geoenviron Eng 124(12): 1177-1185.
    • (1998) J Geotech Geoenviron Eng , vol.124 , Issue.12 , pp. 1177-1185
    • Abu Kiefa, M.A.1
  • 3
    • 0028977232 scopus 로고
    • Neural network: an alternative to pile driving formula
    • Chan WT, Chow YK, Liu LF (1995) Neural network: an alternative to pile driving formula. Comput Geotech 17: 135-156.
    • (1995) Comput Geotech , vol.17 , pp. 135-156
    • Chan, W.T.1    Chow, Y.K.2    Liu, L.F.3
  • 4
    • 0028977138 scopus 로고
    • Prediction of pile capacity from stress-wave measurements: a neural network approach
    • Chow YK, Chan LF, Liu LF, Lee SL (1995) Prediction of pile capacity from stress-wave measurements: a neural network approach. Int J Numer Anal Methods Geomech 19: 107-126.
    • (1995) Int J Numer Anal Methods Geomech , vol.19 , pp. 107-126
    • Chow, Y.K.1    Chan, L.F.2    Liu, L.F.3    Lee, S.L.4
  • 5
    • 0019596045 scopus 로고
    • New design correlations for piles in sand
    • Coyle HM, Castello RR (1981) New design correlations for piles in sand. J Geotech Eng 107(7): 965-986.
    • (1981) J Geotech Eng , vol.107 , Issue.7 , pp. 965-986
    • Coyle, H.M.1    Castello, R.R.2
  • 6
    • 0005692960 scopus 로고
    • Potential application of neuro-biological computational models in geotechnical engineering
    • In: Pande GN, Pietruszezak S (eds), Balkemma, Rotterdam, The Netherlands
    • Ghaboussi J (1992) Potential application of neuro-biological computational models in geotechnical engineering. Numerical models in geomechanices 1992. In: Pande GN, Pietruszezak S (eds), Balkemma, Rotterdam, The Netherlands, pp 543-555.
    • (1992) Numerical models in geomechanices 1992 , pp. 543-555
    • Ghaboussi, J.1
  • 7
    • 0029415865 scopus 로고
    • Empirical design in geotechnics using neural networks
    • Goh ATC
    • Goh ATC (1995) Empirical design in geotechnics using neural networks. Geotechnique 45(4): 709-714.
    • (1995) Geotechnique , vol.45 , Issue.4 , pp. 709-714
  • 8
    • 34848870321 scopus 로고    scopus 로고
    • Support vector machines: their use in geotechnical engineering as illustrated using seismic liquefaction data
    • Goh ATC, Goh SH (2007) Support vector machines: their use in geotechnical engineering as illustrated using seismic liquefaction data. Comput Geotech 34: 410-421.
    • (2007) Comput Geotech , vol.34 , pp. 410-421
    • Goh, A.T.C.1    Goh, S.H.2
  • 10
    • 0030472893 scopus 로고    scopus 로고
    • Prediction of pile bearing capacity using artificial neural network
    • Lee IM, Lee JH (1996) Prediction of pile bearing capacity using artificial neural network. Comput Geotech 18(3): 189-200.
    • (1996) Comput Geotech , vol.18 , Issue.3 , pp. 189-200
    • Lee, I.M.1    Lee, J.H.2
  • 12
    • 0003748256 scopus 로고
    • Ph. D. thesis, Department of comput and neural syst., Calif Institute of Technology, Pasadena, California
    • MacKay DJ (1992) Bayesian methods for adaptive models. Ph. D. thesis, Department of comput and neural syst., Calif Institute of Technology, Pasadena, California.
    • (1992) Bayesian methods for adaptive models
    • MacKay, D.J.1
  • 13
    • 0011944975 scopus 로고    scopus 로고
    • Natick, MA: The MathWorks, Inc., Version 5. 3, MathWork Inc
    • MathWork Inc (1999) Matlab user's manual. Natick, MA: The MathWorks, Inc., Version 5. 3.
    • (1999) Matlab user's manual
  • 14
    • 15744395274 scopus 로고    scopus 로고
    • Neural networks for slope movement prediction
    • Mayoraz F, Vulliet L (2002) Neural networks for slope movement prediction. Int J Geomech 2: 153-173.
    • (2002) Int J Geomech , vol.2 , pp. 153-173
    • Mayoraz, F.1    Vulliet, L.2
  • 15
    • 0016928323 scopus 로고
    • Bearing capacity and settlement of pile foundation
    • Meyerhof GG (1976) Bearing capacity and settlement of pile foundation. J Geotech Eng 102(3): 196-228.
    • (1976) J Geotech Eng , vol.102 , Issue.3 , pp. 196-228
    • Meyerhof, G.G.1
  • 16
    • 0003611509 scopus 로고
    • Ph. D. Thesis: University of Toronto, Tronto, Quebe, Canada
    • Neal R (1994) Bayesian learning for neural networks. Ph. D. Thesis: University of Toronto, Tronto, Quebe, Canada.
    • (1994) Bayesian learning for neural networks
    • Neal, R.1
  • 17
    • 33746870002 scopus 로고    scopus 로고
    • Support vector machines-based modelling of seismic liquefaction potential
    • Pal M (2006) Support vector machines-based modelling of seismic liquefaction potential. Int J Numer Anal Methods Geomech 30: 983-996.
    • (2006) Int J Numer Anal Methods Geomech , vol.30 , pp. 983-996
    • Pal, M.1
  • 18
    • 0032623401 scopus 로고    scopus 로고
    • Forecasting freeway link ravel times with a multi-layer feed forward neural network
    • Park D, Rilett LR (1999) Forecasting freeway link ravel times with a multi-layer feed forward neural network. Comput Aided Civil Infrastructure Eng 14: 358-367.
    • (1999) Comput Aided Civil Infrastructure Eng , vol.14 , pp. 358-367
    • Park, D.1    Rilett, L.R.2
  • 19
    • 2442647136 scopus 로고
    • Capacity of piles driven into dense sand
    • Department of Engineering, Cambridge University
    • Randolph MF (1985) Capacity of piles driven into dense sand. Rep. Soils TR 171, Department of Engineering, Cambridge University.
    • (1985) Rep. Soils TR , vol.171
    • Randolph, M.F.1
  • 23
    • 33645768800 scopus 로고    scopus 로고
    • Artificial neural network prediction of stability numbers for two-layered slopes with associated flow rule
    • Samui P, Kumar B (2006) Artificial neural network prediction of stability numbers for two-layered slopes with associated flow rule. Electron J Geotech Eng 11.
    • (2006) Electron J Geotech Eng , pp. 11
    • Samui, P.1    Kumar, B.2
  • 26
    • 0001224048 scopus 로고    scopus 로고
    • Sparse Bayesian learning and the relevance vector machine
    • Tipping ME (2001) Sparse Bayesian learning and the relevance vector machine. J Mach Learn 1: 211-244.
    • (2001) J Mach Learn , vol.1 , pp. 211-244
    • Tipping, M.E.1
  • 27
    • 0000608177 scopus 로고
    • A comparison of GCV and GML for choosing the smoothing parameters in the generalized spline-smoothing problem
    • Wahba G (1985) A comparison of GCV and GML for choosing the smoothing parameters in the generalized spline-smoothing problem. Ann Stat 4: 1378-1402.
    • (1985) Ann Stat , vol.4 , pp. 1378-1402
    • Wahba, G.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.