메뉴 건너뛰기




Volumn 6, Issue 3, 2012, Pages 177-206

A competitive clustering particle swarm optimizer for dynamic optimization problems

Author keywords

Dynamic optimization; Local search; Multi swarm; Particle swarm optimization; PSO

Indexed keywords

ADAPTIVE SEARCH; COMPETITIVE CLUSTERING; DYNAMIC OPTIMIZATION; DYNAMIC OPTIMIZATION PROBLEM (DOP); FREE PARTICLES; LOCAL SEARCH; MULTI-STAGE CLUSTERING; MULTI-SWARMS; OBJECTIVE FUNCTION VALUES; OPTIMIZATION ALGORITHMS; PARTICLE SWARM OPTIMIZERS; POPULATION-BASED OPTIMIZATION; PSO; PSO ALGORITHMS; STATIC PROBLEMS; SUB-SWARMS;

EID: 84866524139     PISSN: 19353812     EISSN: 19353820     Source Type: Journal    
DOI: 10.1007/s11721-012-0069-0     Document Type: Article
Times cited : (34)

References (48)
  • 1
    • 57649215590 scopus 로고    scopus 로고
    • Particle swarm optimization with dynamic neighborhood topology: three neighborhood strategies and preliminary results
    • Piscataway: IEEE
    • Akat, S. B., & Gazi, V. (2008). Particle swarm optimization with dynamic neighborhood topology: three neighborhood strategies and preliminary results. In Proceedings of the IEEE swarm intelligence symposium (SIS'08) (pp. 1-8). Piscataway: IEEE.
    • (2008) Proceedings of the IEEE Swarm Intelligence Symposium (SIS'08) , pp. 1-8
    • Akat, S.B.1    Gazi, V.2
  • 2
    • 84955609849 scopus 로고    scopus 로고
    • Tracking extrema in dynamic environments
    • Lecture notes in computer science, Berlin: Springer
    • Angeline, P. J. (1997). Tracking extrema in dynamic environments. In Lecture notes in computer science: Vol. 1213. Evolutionary programming VI (pp. 335-345). Berlin: Springer.
    • (1997) Evolutionary Programming VI , vol.1213 , pp. 335-345
    • Angeline, P.J.1
  • 4
    • 56449114411 scopus 로고    scopus 로고
    • Using regression to improve local convergence
    • Piscataway: IEEE
    • Bird, S., & Li, X. (2007). Using regression to improve local convergence. In IEEE congress on evolutionary computation (pp. 592-599). Piscataway: IEEE.
    • (2007) IEEE Congress on Evolutionary Computation , pp. 592-599
    • Bird, S.1    Li, X.2
  • 5
    • 34147184847 scopus 로고    scopus 로고
    • Particle swarm optimization in dynamic environments
    • S. Yang, Y.-S. Ong, and Y. Jin (Eds.), Berlin: Springer
    • Blackwell, T. M. (2007). Particle swarm optimization in dynamic environments. In S. Yang, Y.-S. Ong, & Y. Jin (Eds.), Evolutionary computation in dynamic and uncertain environments (pp. 29-49). Berlin: Springer.
    • (2007) Evolutionary Computation in Dynamic and Uncertain Environments , pp. 29-49
    • Blackwell, T.M.1
  • 8
    • 35048812259 scopus 로고    scopus 로고
    • Multi-swarm optimization in dynamic environments
    • Lecture notes in computer science, Berlin: Springer
    • Blackwell, T. M., & Branke, J. (2004). Multi-swarm optimization in dynamic environments. In Lecture notes in computer science: Vol. 3005. Proceedings of the applications of evolutionary computing (pp. 489-500). Berlin: Springer.
    • (2004) Proceedings of the Applications of Evolutionary Computing , vol.3005 , pp. 489-500
    • Blackwell, T.M.1    Branke, J.2
  • 9
    • 33747387640 scopus 로고    scopus 로고
    • Multiswarms, exclusion, and anti-convergence in dynamic environments
    • Blackwell, T. M., & Branke, J. (2006). Multiswarms, exclusion, and anti-convergence in dynamic environments. IEEE Transactions on Evolutionary Computation, 10(4), 459-472.
    • (2006) IEEE Transactions on Evolutionary Computation , vol.10 , Issue.4 , pp. 459-472
    • Blackwell, T.M.1    Branke, J.2
  • 10
    • 84901453819 scopus 로고    scopus 로고
    • Memory enhanced evolutionary algorithms for changing optimization problems
    • Piscataway: IEEE
    • Branke, J. (1999). Memory enhanced evolutionary algorithms for changing optimization problems. In Proceedings of the IEEE congress on evolutionary computation (CEC'99) (Vol. 3, pp. 1875-1882). Piscataway: IEEE.
    • (1999) Proceedings of the IEEE Congress on Evolutionary Computation (CEC'99) , vol.3 , pp. 1875-1882
    • Branke, J.1
  • 12
    • 4344591317 scopus 로고    scopus 로고
    • Designing evolutionary algorithms for dynamic optimization problems
    • S. Tsutsui and A. Ghosh (Eds.), Berlin: Springer
    • Branke, J., & Schmeck, H. (2002). Designing evolutionary algorithms for dynamic optimization problems. In S. Tsutsui & A. Ghosh (Eds.), Theory and application of evolutionary computation: recent trends (pp. 239-262). Berlin: Springer.
    • (2002) Theory and Application of Evolutionary Computation: Recent Trends , pp. 239-262
    • Branke, J.1    Schmeck, H.2
  • 20
    • 3042517812 scopus 로고    scopus 로고
    • Tracking dynamic systems with PSO: where is the cheese?
    • Indianapolis: Purdue School of Engineering and Technology
    • Hu, X., & Eberhart, R. C. (2001). Tracking dynamic systems with PSO: where is the cheese? In Proceedings of the workshop on particle swarm optimization (pp. 80-83). Indianapolis: Purdue School of Engineering and Technology.
    • (2001) Proceedings of the Workshop on Particle Swarm Optimization , pp. 80-83
    • Hu, X.1    Eberhart, R.C.2
  • 21
    • 84901417404 scopus 로고    scopus 로고
    • Adaptive particle swarm optimisation: detection and response to dynamic systems
    • Piscataway: IEEE
    • Hu, X., & Eberhart, R. C. (2002). Adaptive particle swarm optimisation: detection and response to dynamic systems. In Proceedings of the IEEE congress on evolutionary computation (CEC'02) (Vol. 2, pp. 1666-1670). Piscataway: IEEE.
    • (2002) Proceedings of the IEEE Congress on Evolutionary Computation (CEC'02) , vol.2 , pp. 1666-1670
    • Hu, X.1    Eberhart, R.C.2
  • 26
    • 35048898017 scopus 로고    scopus 로고
    • Adaptively choosing neighborhood bests using species in a particle swarm optimizer for multimodal function optimization
    • Lecture notes in computer science, Berlin: Springer
    • Li, X. (2004). Adaptively choosing neighborhood bests using species in a particle swarm optimizer for multimodal function optimization. In Lecture notes in computer science: Vol. 3103. Proceedings of the genetic and evolutionary computation conference (GECCO'04) (pp. 105-116). Berlin: Springer.
    • (2004) Proceedings of the Genetic and Evolutionary Computation Conference (GECCO'04) , vol.3103 , pp. 105-116
    • Li, X.1
  • 27
    • 76149127651 scopus 로고    scopus 로고
    • Niching without niching parameters: particle swarm optimization using a ring topology
    • Li, X. (2010). Niching without niching parameters: particle swarm optimization using a ring topology. IEEE Transactions on Evolutionary Computation, 14(1), 150-169.
    • (2010) IEEE Transactions on Evolutionary Computation , vol.14 , Issue.1 , pp. 150-169
    • Li, X.1
  • 30
    • 33744730797 scopus 로고    scopus 로고
    • Comprehensive learning particle swarm optimizer for global optimization of multimodal functions
    • Liang, J. J., Qin, A. K., Suganthan, P. N., & Baskar, S. (2006). Comprehensive learning particle swarm optimizer for global optimization of multimodal functions. IEEE Transactions on Evolutionary Computation, 10(3), 281-295.
    • (2006) IEEE Transactions on Evolutionary Computation , vol.10 , Issue.3 , pp. 281-295
    • Liang, J.J.1    Qin, A.K.2    Suganthan, P.N.3    Baskar, S.4
  • 31
    • 78649929394 scopus 로고    scopus 로고
    • Particle swarm optimization with composite particles in dynamic environments
    • Liu, L., Yang, S., & Wang, D. (2010). Particle swarm optimization with composite particles in dynamic environments. IEEE Transactions on Systems, Man, and Cybernetics. Part B, 40(6), 1634-1648.
    • (2010) IEEE Transactions on Systems, Man, and Cybernetics. Part B , vol.40 , Issue.6 , pp. 1634-1648
    • Liu, L.1    Yang, S.2    Wang, D.3
  • 34
    • 79954575354 scopus 로고    scopus 로고
    • A novel particle swarm optimization algorithm with adaptive inertia weight
    • Nickabadi, A., Ebadzadeh, M. M., & Safabakhs, R. (2011). A novel particle swarm optimization algorithm with adaptive inertia weight. Applied Soft Computing, 11(4), 3658-3670.
    • (2011) Applied Soft Computing , vol.11 , Issue.4 , pp. 3658-3670
    • Nickabadi, A.1    Ebadzadeh, M.M.2    Safabakhs, R.3
  • 35
    • 4344560137 scopus 로고    scopus 로고
    • A particle swarm model for tracking multiple peaks in a dynamic environment using speciation
    • Piscataway: IEEE
    • Parrott, D., & Li, X. (2004). A particle swarm model for tracking multiple peaks in a dynamic environment using speciation. In Proceedings of the IEEE congress on evolutionary computation (CEC'04) (Vol. 1, pp. 98-103). Piscataway: IEEE.
    • (2004) Proceedings of the IEEE Congress on Evolutionary Computation (CEC'04) , vol.1 , pp. 98-103
    • Parrott, D.1    Li, X.2
  • 36
    • 33747430130 scopus 로고    scopus 로고
    • Locating and tracking multiple dynamic optima by a particle swarm model using speciation
    • Parrott, D., & Li, X. (2006). Locating and tracking multiple dynamic optima by a particle swarm model using speciation. IEEE Transactions on Evolutionary Computation, 10(4), 440-458.
    • (2006) IEEE Transactions on Evolutionary Computation , vol.10 , Issue.4 , pp. 440-458
    • Parrott, D.1    Li, X.2
  • 37
    • 0344291226 scopus 로고    scopus 로고
    • Recent approaches to global optimization problems through particle swarm optimization
    • Parsopoulos, K. E., & Vrahatis, M. N. (2002). Recent approaches to global optimization problems through particle swarm optimization. Natural Computing, 1(2-3), 235-306.
    • (2002) Natural Computing , vol.1 , Issue.2-3 , pp. 235-306
    • Parsopoulos, K.E.1    Vrahatis, M.N.2
  • 38
    • 57749091751 scopus 로고    scopus 로고
    • Particle swarm optimization for multimodal functions: a clustering approach
    • Passaro, A., & Starita, A. (2008). Particle swarm optimization for multimodal functions: a clustering approach. Journal of Artificial Evolution and Applications, 2008 1-15.
    • (2008) Journal of Artificial Evolution and Applications , vol.2008 , pp. 1-15
    • Passaro, A.1    Starita, A.2
  • 41
    • 33751371248 scopus 로고    scopus 로고
    • Containing particles inside niches when optimizing multimodal functions
    • South African Institute for Computer Scientists and Information Technologists, Republic of South Africa
    • Schoeman, L., & Engelbrecht, A. P. (2005b). Containing particles inside niches when optimizing multimodal functions. In Proceedings of SAICSIT 2005, South African Institute for Computer Scientists and Information Technologists, Republic of South Africa (pp. 78-85).
    • (2005) Proceedings of SAICSIT 2005 , pp. 78-85
    • Schoeman, L.1    Engelbrecht, A.P.2
  • 46
    • 84947917443 scopus 로고    scopus 로고
    • An analysis of dynamic severity and population size
    • M. Schoenauer, K. Deb, G. Rudolph, X. Yao, E. Lutton, J. J. Merelo, and H.-P. Schwefel (Eds.), Berlin: Springer
    • Weicker, K. (2000). An analysis of dynamic severity and population size. In M. Schoenauer, K. Deb, G. Rudolph, X. Yao, E. Lutton, J. J. Merelo, & H.-P. Schwefel (Eds.), Parallel problem solving from nature (PPSN VI) (pp. 159-168). Berlin: Springer.
    • (2000) Parallel Problem Solving from Nature (PPSN VI) , pp. 159-168
    • Weicker, K.1
  • 47
    • 78649882324 scopus 로고    scopus 로고
    • A clustering particle swarm optimizer for locating and tracking multiple optima in dynamic environments
    • Yang, S., & Li, C. (2010). A clustering particle swarm optimizer for locating and tracking multiple optima in dynamic environments. IEEE Transactions on Evolutionary Computation, 14(6), 959-974.
    • (2010) IEEE Transactions on Evolutionary Computation , vol.14 , Issue.6 , pp. 959-974
    • Yang, S.1    Li, C.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.