메뉴 건너뛰기




Volumn 13, Issue 4, 2012, Pages 695-710

BaySTDetect: Detecting unusual temporal patterns in small area data via Bayesian model choice

Author keywords

Bayesian spatiotemporal analysis; COPD; Detection; Disease surveillance; FDR

Indexed keywords

ARTICLE; BAYES THEOREM; CHRONIC OBSTRUCTIVE LUNG DISEASE; CLUSTER ANALYSIS; COMPARATIVE STUDY; COMPUTER SIMULATION; HUMAN; MORTALITY; STATISTICAL ANALYSIS; STATISTICAL MODEL; UNITED KINGDOM;

EID: 84866353012     PISSN: 14654644     EISSN: 14684357     Source Type: Journal    
DOI: 10.1093/biostatistics/kxs005     Document Type: Article
Times cited : (38)

References (40)
  • 1
    • 51249093740 scopus 로고    scopus 로고
    • Use of space-time models to investigate the stability of patterns of disease
    • ABELLAN, J., RICHARDSON, S. AND BEST, N. (2008). Use of space-time models to investigate the stability of patterns of disease. Environmental Health Perspectives 116, 1111-1119.
    • (2008) Environmental Health Perspectives , vol.116 , pp. 1111-1119
    • Abellan, J.1    Richardson, S.2    Best, N.3
  • 2
    • 0001677717 scopus 로고
    • Controlling the false discovery rate: A practical and powerful approach to multiple testing
    • BENJAMINI, Y. AND HOCHBERG, Y. (1995). Controlling the false discovery rate: a practical and powerful approach to multiple testing. Journal of the Royal Statistical Society Series B 57, 289-300.
    • (1995) Journal of the Royal Statistical Society Series B , vol.57 , pp. 289-300
    • Benjamini, Y.1    Hochberg, Y.2
  • 4
    • 67651092172 scopus 로고    scopus 로고
    • Geographic variations in risk: Adjusting for unmeasured confounders through joint modeling of multiple diseases
    • BEST, N. AND HANSELL, A. (2009). Geographic variations in risk: adjusting for unmeasured confounders through joint modeling of multiple diseases. Epidemiology 20, 400-410.
    • (2009) Epidemiology , vol.20 , pp. 400-410
    • Best, N.1    Hansell, A.2
  • 6
    • 0032273615 scopus 로고    scopus 로고
    • General methods for monitoring convergence of iterative simulations
    • BROOKS, S. P. AND GELMAN, A. (1998). General methods for monitoring convergence of iterative simulations. Journal of Computational and Graphical Statistics 7, 434-455. (Pubitemid 128635035)
    • (1998) Journal of Computational and Graphical Statistics , vol.7 , Issue.4 , pp. 434-455
    • Brooks, S.P.1    Gelman, A.2
  • 7
    • 0031840136 scopus 로고    scopus 로고
    • Coal mining and chronic obstructive pulmonary disease: A review of the evidence
    • COGGON, D. AND TAYLOR, N. (1998). Coal mining and chronic obstructive pulmonary disease: a review of the evidence. Thorax 53, 398-407. (Pubitemid 28261333)
    • (1998) Thorax , vol.53 , Issue.5 , pp. 398-407
    • Coggon, D.1    Taylor, A.N.2
  • 8
    • 0035649015 scopus 로고    scopus 로고
    • Bayesian inference for generalized additive mixed models based on Markov random field priors
    • FAHRMEIR, L. AND LANG, S. (2001). Bayesian inference for generalized additive mixed models based on Markov random field priors. Applied Statistics 50, 201-220.
    • (2001) Applied Statistics , vol.50 , pp. 201-220
    • Fahrmeir, L.1    Lang, S.2
  • 10
    • 84867086419 scopus 로고    scopus 로고
    • Prior distributions for variance parameters in hierarchical models
    • GELMAN, A. (2006). Prior distributions for variance parameters in hierarchical models. Bayesian Analysis 1, 515-533.
    • (2006) Bayesian Analysis , vol.1 , pp. 515-533
    • Gelman, A.1
  • 11
    • 84972492387 scopus 로고
    • Inference from iterative simulation using multiple sequences
    • GELMAN, A. AND RUBIN, D. B. (1992). Inference from iterative simulation using multiple sequences. Statistical Science 7, 457-472.
    • (1992) Statistical Science , vol.7 , pp. 457-472
    • Gelman, A.1    Rubin, D.B.2
  • 15
    • 0242720157 scopus 로고    scopus 로고
    • What do chronic obstructive pulmonary disease patients die from? A multiple cause coding analysis
    • DOI 10.1183/09031936.03.00031403
    • HANSELL, A., WALK, J. AND SORIANO, J. (2003b). What do chronic obstructive pulmonary disease patients die from? A multiple cause coding analysis. European Respiratory Journal 22, 809-814. (Pubitemid 37369571)
    • (2003) European Respiratory Journal , vol.22 , Issue.5 , pp. 809-814
    • Hansell, A.L.1    Walk, J.A.2    Soriano, J.B.3
  • 16
    • 0034665770 scopus 로고    scopus 로고
    • Bayesian modelling of inseparable space-time variation in disease risk
    • KNORR-HELD, L. (2000). Bayesian modelling of inseparable space-time variation in disease risk. Statistics in Medicine 19, 2555-2567.
    • (2000) Statistics in Medicine , vol.19 , pp. 2555-2567
    • Knorr-Held, L.1
  • 17
    • 0032581956 scopus 로고    scopus 로고
    • Modelling risk from a disease in time and space
    • DOI 10.1002/(SICI)1097-0258(19980930)17:18<2045::AID-SIM943>3.0. CO;2-P
    • KNORR-HELD, L. AND BESAG, J. (1998). Modelling risk from a disease in time and space. Statistics in Medicine 17, 2045-2060. (Pubitemid 28442014)
    • (1998) Statistics in Medicine , vol.17 , Issue.18 , pp. 2045-2060
    • Knorr-Held, L.1    Besag, J.2
  • 19
    • 0035649866 scopus 로고    scopus 로고
    • Prospective time periodic geographical disease surveillance using a scan statistic
    • KULLDORFF, M. (2001). Prospective time periodic geographical disease surveillance using a scan statistic. Journal of the Royal Statistical Society Series A 164, 61-72.
    • (2001) Journal of the Royal Statistical Society Series A , vol.164 , pp. 61-72
    • Kulldorff, M.1
  • 23
    • 0006407254 scopus 로고    scopus 로고
    • WinBUGS-a Bayesian modelling framework: Concepts, structure, and extensibility
    • LUNN, D., THOMAS, A., BEST, N. AND SPIEGELHALTER, D. (2000). WinBUGS-a Bayesian modelling framework: concepts, structure, and extensibility. Statistics and Computing 10, 325-337.
    • (2000) Statistics and Computing , vol.10 , pp. 325-337
    • Lunn, D.1    Thomas, A.2    Best, N.3    Spiegelhalter, D.4
  • 24
    • 35348948366 scopus 로고    scopus 로고
    • Spline smoothing in Bayesian disease mapping
    • DOI 10.1002/env.876
    • MACNAB, Y. (2007). Spline smoothing in Bayesian disease mapping. Environmetrics 18, 727-744. (Pubitemid 47608102)
    • (2007) Environmetrics , vol.18 , Issue.7 , pp. 727-744
    • MacNab, Y.C.1
  • 25
    • 0034863468 scopus 로고    scopus 로고
    • Autoregressive spatial smoothing and temporal spline smoothing for mapping rates
    • MACNAB, Y. AND DEAN, C. (2001). Autoregressive spatial smoothing and temporal spline smoothing for mapping rates. Biometrics 57, 949-956. (Pubitemid 32801194)
    • (2001) Biometrics , vol.57 , Issue.3 , pp. 949-956
    • MacNab, Y.C.1    Dean, C.B.2
  • 26
    • 0014054519 scopus 로고
    • The detection of disease clustering and a generalized regression approach
    • MANTEL, N. (1967). The detection of disease clustering and a generalized regression approach. Cancer Research 27, 209-220.
    • (1967) Cancer Research , vol.27 , pp. 209-220
    • Mantel, N.1
  • 27
    • 77950562657 scopus 로고    scopus 로고
    • Cause-specific mortality in british coal workers and exposure to respirable dust and quartz
    • MILLER, B. AND MACCALMAN, L. (2010). Cause-specific mortality in british coal workers and exposure to respirable dust and quartz. Occupational and Environmental Medicine 67, 270-276.
    • (2010) Occupational and Environmental Medicine , vol.67 , pp. 270-276
    • Miller, B.1    MacCalman, L.2
  • 29
    • 10844254626 scopus 로고    scopus 로고
    • Optimal sample size for multiple testing: The case of gene expression microarrays
    • DOI 0.1198/016214504000001646
    • MÜLLER, P., PARMIGIANI, G., ROBERT, C. AND ROUSSEAUR, J. (2004). Optimal sample size for multiple testing: the case of gene expression microarrays. Journal of the American Statistical Association 99, 990-1001. (Pubitemid 39665945)
    • (2004) Journal of the American Statistical Association , vol.99 , Issue.468 , pp. 990-1001
    • Muller, P.1    Parmigiani, G.2    Robert, C.3    Rousseau, J.4
  • 30
    • 4444235995 scopus 로고    scopus 로고
    • Detecting differential gene expression with a semiparametric hierarchical mixture method
    • NEWTON, M. A., NOUEIRY, A., SARKAR, D. AND AHLQUIST, P. (2004). Detecting differential gene expression with a semiparametric hierarchical mixture method. Biostatistics 5, 155.
    • (2004) Biostatistics , vol.5 , pp. 155
    • Newton, M.A.1    Noueiry, A.2    Sarkar, D.3    Ahlquist, P.4
  • 31
    • 84866398615 scopus 로고    scopus 로고
    • NHS-TOWER HAMLETS. Technical Report, National Health Services (NHS, UK)
    • NHS-TOWER HAMLETS. (2009). NHS Tower Hamlets strategic plan 2009-2010 to 2012-2013. Technical Report, National Health Services (NHS, UK).
    • (2009) NHS Tower Hamlets Strategic Plan 2009-2010 to 2012-2013
  • 33
    • 0031840021 scopus 로고    scopus 로고
    • Coal miners' respiratory disease litigation
    • RUDD, R. (1998). Coal miner's respiratory disease litigation. Thorax 53, 337-340. (Pubitemid 28261321)
    • (1998) Thorax , vol.53 , Issue.5 , pp. 337-340
    • Rudd, R.1
  • 35
    • 0031841503 scopus 로고    scopus 로고
    • The new prescription: Industrial injuries benefits for smokers?
    • SEATON, A. (1998). The new prescription: industrial injuries benefits for smokers? Thorax 53, 335-336. (Pubitemid 28261320)
    • (1998) Thorax , vol.53 , Issue.5 , pp. 335-336
    • Seaton, A.1
  • 38
    • 78650652132 scopus 로고    scopus 로고
    • Multiple testing on standardized mortality ratios: A Bayesian hierarchical model for FDR estimation
    • VENTRUCCI, M., SCOTT, M. AND COCCHI, D. (2011). Multiple testing on standardized mortality ratios: a Bayesian hierarchical model for FDR estimation. Biostatistics 12, 51-67.
    • (2011) Biostatistics , vol.12 , pp. 51-67
    • Ventrucci, M.1    Scott, M.2    Cocchi, D.3
  • 39
    • 34547782270 scopus 로고    scopus 로고
    • A bayesian measure of the probability of false discovery in genetic epidemiology studies
    • DOI 10.1086/519024
    • WAKEFIELD, J. (2007). A Bayesian measure of the probability of false discovery in genetic epidemiology studies. The American Journal of Human Genetics 81, 208-227. (Pubitemid 47236070)
    • (2007) American Journal of Human Genetics , vol.81 , Issue.2 , pp. 208-227
    • Wakefield, J.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.