메뉴 건너뛰기




Volumn , Issue , 2012, Pages 1294-1302

RecMax: Exploiting recommender systems for fun and profit

Author keywords

collaborative filtering; maximization; recommender systems; seed set selection; targeted marketing

Indexed keywords

COLLABORATIVE FILTERING; MARKETING CAMPAIGN; NATURAL HEURISTICS; NEW PRODUCT; NP-HARD; REAL-WORLD APPLICATION; REAL-WORLD DATASETS; RECOMMENDER ALGORITHMS; SEED SET; TARGETED MARKETING;

EID: 84866052908     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1145/2339530.2339731     Document Type: Conference Paper
Times cited : (21)

References (17)
  • 1
    • 20844435854 scopus 로고    scopus 로고
    • Toward the next generation of recommender systems: A survey of the state-of-the-art and possible extensions
    • G. Adomavicius and A. Tuzhilin. Toward the next generation of recommender systems: A survey of the state-of-the-art and possible extensions. IEEE Trans. on Knowl. and Data Eng., 17, 2005.
    • (2005) IEEE Trans. on Knowl. and Data Eng. , vol.17
    • Adomavicius, G.1    Tuzhilin, A.2
  • 2
    • 82555191356 scopus 로고    scopus 로고
    • A market-based approach to address the new item problem
    • S. S. Anand and N. Griffiths. A market-based approach to address the new item problem. In RecSys, 2011.
    • (2011) RecSys
    • Anand, S.S.1    Griffiths, N.2
  • 3
    • 84858044308 scopus 로고    scopus 로고
    • Maximizing product adoption in social networks
    • S. Bhagat, A. Goyal, and L. V. S. Lakshmanan. Maximizing product adoption in social networks. In WSDM, 2012.
    • (2012) WSDM
    • Bhagat, S.1    Goyal, A.2    Lakshmanan, L.V.S.3
  • 4
    • 70350643635 scopus 로고    scopus 로고
    • Efficient influence maximization in social networks
    • W. Chen, Y. Wang, and S. Yang. Efficient influence maximization in social networks. In KDD, 2009.
    • (2009) KDD
    • Chen, W.1    Wang, Y.2    Yang, S.3
  • 5
    • 0035789667 scopus 로고    scopus 로고
    • Mining the network value of customers
    • P. Domingos and M. Richardson. Mining the network value of customers. In KDD, 2001.
    • (2001) KDD
    • Domingos, P.1    Richardson, M.2
  • 6
    • 0002549585 scopus 로고    scopus 로고
    • Eigentaste: A constant time collaborative filtering algorithm
    • K. Y. Goldberg et al. Eigentaste: A constant time collaborative filtering algorithm. Inf. Retr., 4(2), 2001.
    • (2001) Inf. Retr. , vol.4 , Issue.2
    • Goldberg, K.Y.1
  • 7
    • 57349187579 scopus 로고    scopus 로고
    • Optimal marketing strategies over social networks
    • J. D. Hartline et al. Optimal marketing strategies over social networks. In WWW, 2008.
    • (2008) WWW
    • Hartline, J.D.1
  • 9
    • 85015559680 scopus 로고    scopus 로고
    • An algorithmic framework for performing collaborative filtering
    • J. L. Herlocker et al. An algorithmic framework for performing collaborative filtering. In SIGIR, 1999.
    • (1999) SIGIR
    • Herlocker, J.L.1
  • 10
    • 33747172362 scopus 로고    scopus 로고
    • Maximizing the spread of influence through a social network
    • D. Kempe, J. M. Kleinberg, and É. Tardos. Maximizing the spread of influence through a social network. In KDD, 2003.
    • (2003) KDD
    • Kempe, D.1    Kleinberg, J.M.2    Tardos, É.3
  • 11
    • 70349824268 scopus 로고    scopus 로고
    • Addressing cold-start problem in recommendation systems
    • X. N. Lam et al. Addressing cold-start problem in recommendation systems. In ICUIMC, 2008.
    • (2008) ICUIMC
    • Lam, X.N.1
  • 12
    • 35348969366 scopus 로고    scopus 로고
    • Toward trustworthy recommender systems: An analysis of attack models and algorithm robustness
    • B. Mobasher et al. Toward trustworthy recommender systems: An analysis of attack models and algorithm robustness. ACM Trans. Internet Techn., 7(4), 2007.
    • (2007) ACM Trans. Internet Techn. , vol.7 , Issue.4
    • Mobasher, B.1
  • 13
    • 84880098428 scopus 로고    scopus 로고
    • Influence in ratings-based recommender systems: An algorithm-independent approach
    • A. Rashid, G. Karypis, and J. Riedl. Influence in ratings-based recommender systems: An algorithm-independent approach. In SDM, 2005.
    • (2005) SDM
    • Rashid, A.1    Karypis, G.2    Riedl, J.3
  • 15
    • 0038003568 scopus 로고    scopus 로고
    • Item-based collaborative filtering recommendation algorithms
    • B. Sarwar, G. Karypis, J. Konstan, and J. Reidl. Item-based collaborative filtering recommendation algorithms. In WWW, 2001.
    • (2001) WWW
    • Sarwar, B.1    Karypis, G.2    Konstan, J.3    Reidl, J.4
  • 16
    • 63449123891 scopus 로고    scopus 로고
    • Matrix factorization and neighbor based algorithms for the netflix prize problem
    • G. Takács et al. Matrix factorization and neighbor based algorithms for the netflix prize problem. In RecSys, 2008.
    • (2008) RecSys
    • Takács, G.1
  • 17
    • 33750345680 scopus 로고    scopus 로고
    • Unifying user-based and item-based collaborative filtering approaches by similarity fusion
    • J. Wang, A. P. de Vries, and M. J. T. Reinders. Unifying user-based and item-based collaborative filtering approaches by similarity fusion. In SIGIR, 2006.
    • (2006) SIGIR
    • Wang, J.1    De Vries, A.P.2    Reinders, M.J.T.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.