메뉴 건너뛰기




Volumn , Issue , 2012, Pages 480-488

Optimal exact least squares rank minimization

Author keywords

global optimality; nonconvex; rank minimization

Indexed keywords

ESTIMATION ERRORS; GLOBAL OPTIMALITY; GLOBAL SOLUTIONS; LEAST SQUARE; LEAST-SQUARES FORMULATION; LOSS FUNCTIONS; MULTI VARIATE ANALYSIS; NOISY DATA; NONCONVEX; NP-HARD; RANK CONSTRAINTS; SOLUTION PATH;

EID: 84866045291     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1145/2339530.2339609     Document Type: Conference Paper
Times cited : (36)

References (35)
  • 3
    • 0001497505 scopus 로고
    • Estimating linear restrictions on regression coefficients for multivariate normal distributions
    • T. Anderson. Estimating linear restrictions on regression coefficients for multivariate normal distributions. The Annals of Mathematical Statistics, 22(3):327-351, 1951.
    • (1951) The Annals of Mathematical Statistics , vol.22 , Issue.3 , pp. 327-351
    • Anderson, T.1
  • 4
    • 0033236914 scopus 로고    scopus 로고
    • Asymptotic distribution of the reduced rank regression estimator under general conditions
    • T. Anderson. Asymptotic distribution of the reduced rank regression estimator under general conditions. The Annals of Statistics, 27(4):1141-1154, 1999.
    • (1999) The Annals of Statistics , vol.27 , Issue.4 , pp. 1141-1154
    • Anderson, T.1
  • 5
    • 0031097573 scopus 로고    scopus 로고
    • Low-rank estimation of higher order statistics. Signal Processing
    • T. André, R. Nowak, and B. Van Veen. Low-rank estimation of higher order statistics. Signal Processing, IEEE Transactions on, 45(3):673-685, 1997.
    • (1997) IEEE Transactions on , vol.45 , Issue.3 , pp. 673-685
    • André, T.1    Nowak, R.2    Van Veen, B.3
  • 7
    • 82655182661 scopus 로고    scopus 로고
    • Optimal selection of reduced rank estimators of high-dimensional matrices
    • F. Bunea, Y. She, and M. Wegkamp. Optimal selection of reduced rank estimators of high-dimensional matrices. The Annals of Statistics, 39(2):1282-1309, 2011.
    • (2011) The Annals of Statistics , vol.39 , Issue.2 , pp. 1282-1309
    • Bunea, F.1    She, Y.2    Wegkamp, M.3
  • 8
    • 77951291046 scopus 로고    scopus 로고
    • A singular value thresholding algorithm for matrix completion
    • J. Cai, E. Candès, and Z. Shen. A singular value thresholding algorithm for matrix completion. SIAM Journal of Optimization, 20(4):1956-1982, 2010.
    • (2010) SIAM Journal of Optimization , vol.20 , Issue.4 , pp. 1956-1982
    • Cai, J.1    Candès, E.2    Shen, Z.3
  • 12
    • 0000802374 scopus 로고
    • The approximation of one matrix by another of lower rank
    • C. Eckart and G. Young. The approximation of one matrix by another of lower rank. Psychometrika, 1(3):211-218, 1936.
    • (1936) Psychometrika , vol.1 , Issue.3 , pp. 211-218
    • Eckart, C.1    Young, G.2
  • 13
    • 0034853839 scopus 로고    scopus 로고
    • A rank minimization heuristic with application to minimum order system approximation
    • IEEE
    • M. Fazel, H. Hindi, and S. Boyd. A rank minimization heuristic with application to minimum order system approximation. In American Control Conference, 2001. Proceedings of the 2001, volume 6, pages 4734-4739. IEEE, 2001.
    • (2001) American Control Conference, 2001. Proceedings of the 2001 , vol.6 , pp. 4734-4739
    • Fazel, M.1    Hindi, H.2    Boyd, S.3
  • 15
    • 0016511949 scopus 로고
    • Reduced-rank regression for the multivariate linear model
    • A. Izenman. Reduced-rank regression for the multivariate linear model. Journal of multivariate analysis, 5(2):248-264, 1975.
    • (1975) Journal of Multivariate Analysis , vol.5 , Issue.2 , pp. 248-264
    • Izenman, A.1
  • 23
    • 0029291966 scopus 로고
    • Sparse approximation solutions to linear systems
    • B. K. Natarajan. Sparse approximation solutions to linear systems. SIAM J. Comput., 24(2):227-234, 1995.
    • (1995) SIAM J. Comput. , vol.24 , Issue.2 , pp. 227-234
    • Natarajan, B.K.1
  • 24
    • 79952934740 scopus 로고    scopus 로고
    • Estimation of (near) low-rank matrices with noise and high-dimensional scaling
    • S. Negahban and M. J. Wainwright. Estimation of (near) low-rank matrices with noise and high-dimensional scaling. Annals of Statistics, 39(2):1069-1097, 2011.
    • (2011) Annals of Statistics , vol.39 , Issue.2 , pp. 1069-1097
    • Negahban, S.1    Wainwright, M.J.2
  • 25
    • 79251515185 scopus 로고    scopus 로고
    • Trace norm regularization: Reformulations, algorithms, and multi-task learning
    • T. Pong, P. Tseng, S. Ji, and J. Ye. Trace norm regularization: Reformulations, algorithms, and multi-task learning. SIAM Journal on Optimization, 20:3465-3489, 2010.
    • (2010) SIAM Journal on Optimization , vol.20 , pp. 3465-3489
    • Pong, T.1    Tseng, P.2    Ji, S.3    Ye, J.4
  • 26
    • 0006580818 scopus 로고
    • Matrix approximations and reduction of dimensionality in multivariate statistical analysis
    • C. Rao. Matrix approximations and reduction of dimensionality in multivariate statistical analysis. Multivariate analysis, 5:3-22, 1980.
    • (1980) Multivariate Analysis , vol.5 , pp. 3-22
    • Rao, C.1
  • 27
    • 78549288866 scopus 로고    scopus 로고
    • Guaranteed Minimum-Rank Solutions of Linear Matrix Equations via Nuclear Norm Minimization
    • B. Recht, M. Fazel, and P. Parrilo. Guaranteed Minimum-Rank Solutions of Linear Matrix Equations via Nuclear Norm Minimization. SIAM Review, 52(471), 2010.
    • (2010) SIAM Review , vol.52 , Issue.471
    • Recht, B.1    Fazel, M.2    Parrilo, P.3
  • 31
  • 32
    • 52449136335 scopus 로고
    • Best approximate solutions to matrix equations under rank restrictions
    • D. Sondermann. Best approximate solutions to matrix equations under rank restrictions. Statistical Papers, 27(1):57-66, 1986.
    • (1986) Statistical Papers , vol.27 , Issue.1 , pp. 57-66
    • Sondermann, D.1
  • 34
    • 78049448383 scopus 로고    scopus 로고
    • An accelerated proximal gradient algorithm for nuclear norm regularized linear least squares problems
    • K. Toh and S. Yun. An accelerated proximal gradient algorithm for nuclear norm regularized linear least squares problems. Pacific J. Optim, 6:615-640, 2010.
    • (2010) Pacific J. Optim , vol.6 , pp. 615-640
    • Toh, K.1    Yun, S.2
  • 35
    • 84863367863 scopus 로고    scopus 로고
    • Robust principal component analysis: Exact recovery of corrupted low-rank matrices via convex optimization
    • J. Wright, A. Ganesh, S. Rao, and Y. Ma. Robust principal component analysis: Exact recovery of corrupted low-rank matrices via convex optimization. Advances in Neural Information Processing Systems, 2009.
    • (2009) Advances in Neural Information Processing Systems
    • Wright, J.1    Ganesh, A.2    Rao, S.3    Ma, Y.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.