-
1
-
-
0001179408
-
Competition and multiple cause models
-
P. Dayan and R. S. Zemel. Competition and multiple cause models. Neural Computation, 7(3), 1995.
-
(1995)
Neural Computation
, vol.7
, Issue.3
-
-
Dayan, P.1
Zemel, R. S.2
-
2
-
-
0025604930
-
Forming sparse representations by local anti-Hebbian learning
-
P. Foldiak. Forming sparse representations by local anti-Hebbian learning. Biological Cybernetics, 64, 1990.
-
(1990)
Biological Cybernetics
, vol.64
-
-
Foldiak, P.1
-
3
-
-
0000258816
-
Factorial learning and the EM algorithm
-
MIT Press
-
Z. Ghahramani. Factorial learning and the EM algorithm. In NIPS, volume 7. MIT Press, 1995.
-
(1995)
NIPS
, vol.7
-
-
Ghahramani, Z.1
-
4
-
-
0033569406
-
Molecular classification of cancer: Class discovery and class prediction by gene expression monitoring
-
T. R. Golub, D. K. Slonim, P. Tamayo, C. Huard, M. Gaasenbeek, J. P. Mesirov, H. Coller, M. L. Loh, J. R. Downing, M. A. Caligiuri, C. D. Bloomfield, and E. S. Lander. Molecular classification of cancer: Class discovery and class prediction by gene expression monitoring. Science, 286(5439), 1999.
-
(1999)
Science
, vol.286
, Issue.5439
-
-
Golub, T. R.1
Slonim, D. K.2
Tamayo, P.3
Huard, C.4
Gaasenbeek, M.5
Mesirov, J. P.6
Coller, H.7
Loh, M. L.8
Downing, J. R.9
Caligiuri, M. A.10
Bloomfield, C. D.11
Lander, E. S.12
-
5
-
-
84864043341
-
Infinite latent feature models and the Indian buffet process
-
MIT Press
-
T. Griffiths and Z. Ghahramani. Infinite latent feature models and the Indian buffet process. In NIPS, volume 18. MIT Press, 2005.
-
(2005)
NIPS
, vol.18
-
-
Griffiths, T.1
Ghahramani, Z.2
-
7
-
-
0002834189
-
Autoencoders, minimum description length, and Helmholtz free energy
-
Morgan Kaufmann
-
G. Hinton and R. S. Zemel. Autoencoders, minimum description length, and Helmholtz free energy. In NIPS, volume 6. Morgan Kaufmann, 1994.
-
(1994)
NIPS
, vol.6
-
-
Hinton, G.1
Zemel, R. S.2
-
8
-
-
85069299566
-
Splitting and merging for a nonconjugate Dirichlet process mixture model
-
S. Jain and R. M. Neal. Splitting and merging for a nonconjugate Dirichlet process mixture model. To appear in Bayesian Analysis.
-
To appear in Bayesian Analysis
-
-
Jain, S.1
Neal, R. M.2
-
9
-
-
33750696648
-
Learning systems of concepts with an infinite relational model
-
C. Kemp, J. B. Tenebaum, T. L. Griffiths, T. Yamada, and N. Ueda. Learning systems of concepts with an infinite relational model. Proceedings of the Twenty-First National Conference on Artificial Intelligence, 2006.
-
(2006)
Proceedings of the Twenty-First National Conference on Artificial Intelligence
-
-
Kemp, C.1
Tenebaum, J. B.2
Griffiths, T. L.3
Yamada, T.4
Ueda, N.5
-
10
-
-
0036012349
-
Plaid models for gene expression data
-
L. Lazzeroni and A. Owen. Plaid models for gene expression data. Statistica Sinica, 12, 2002.
-
(2002)
Statistica Sinica
, vol.12
-
-
Lazzeroni, L.1
Owen, A.2
-
12
-
-
0003040479
-
A multiple cause mixture model for unsupervised learning
-
E. Saund. A multiple cause mixture model for unsupervised learning. Neural Computation, 7(1), 1994.
-
(1994)
Neural Computation
, vol.7
, Issue.1
-
-
Saund, E.1
-
13
-
-
0003714291
-
-
Technical report, Stanford University, Department of Statistics
-
R. Tibshirani, T. Hastie, M. Eisen, D. Ross, D. Botstein, and P. Brown. Clustering methods for the analysis of DNA microarray data. Technical report, Stanford University, 1999. Department of Statistics.
-
(1999)
Clustering methods for the analysis of DNA microarray data
-
-
Tibshirani, R.1
Hastie, T.2
Eisen, M.3
Ross, D.4
Botstein, D.5
Brown, P.6
|