메뉴 건너뛰기




Volumn , Issue , 2012, Pages 1357-1365

Design principles of massive, robust prediction systems

Author keywords

data mining systems; data monitoring; quality control

Indexed keywords

CLASSIFICATION MODELS; CLASSIFICATION PERFORMANCE; CONTROL PROCESS; DATA DISTRIBUTION; DATA MINING SYSTEM; DATA MONITORING; DESIGN PRINCIPLES; EXTERNAL FACTORS; HIGH QUALITY; MANUAL INTERVENTION; MASSIVE PRODUCTION; PREDICTION SYSTEMS; SOURCE DATA; TARGETING SYSTEMS;

EID: 84866027803     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1145/2339530.2339740     Document Type: Conference Paper
Times cited : (29)

References (20)
  • 1
    • 77956196339 scopus 로고    scopus 로고
    • Evaluating online ad campaigns in a pipeline: Causal models at scale
    • ACM
    • D. Chan, R. Ge, O. Gershony, T. Hesterberg, and D. Lambert. Evaluating online ad campaigns in a pipeline: causal models at scale. In Proceedings of KDD, pages 7-16. ACM, 2010.
    • (2010) Proceedings of KDD , pp. 7-16
    • Chan, D.1    Ge, R.2    Gershony, O.3    Hesterberg, T.4    Lambert, D.5
  • 2
    • 27344454215 scopus 로고    scopus 로고
    • Learning from labeled and unlabeled data: An empirical study across techniques and domains
    • N. Chawla and G. Karakoulas. Learning from labeled and unlabeled data: An empirical study across techniques and domains. Journal of Artificial Intelligence Research, 23(1):331-366, 2005.
    • (2005) Journal of Artificial Intelligence Research , vol.23 , Issue.1 , pp. 331-366
    • Chawla, N.1    Karakoulas, G.2
  • 3
    • 36849059225 scopus 로고    scopus 로고
    • Detecting changes in large data sets of payment card data: A case study
    • ACM
    • C. Curry, R. Grossman, D. Locke, S. Vejcik, and J. Bugajski. Detecting changes in large data sets of payment card data: a case study. In Proceedings of KDD, pages 1018-1022. ACM, 2007.
    • (2007) Proceedings of KDD , pp. 1018-1022
    • Curry, C.1    Grossman, R.2    Locke, D.3    Vejcik, S.4    Bugajski, J.5
  • 7
    • 80052669647 scopus 로고    scopus 로고
    • Interactive learning for efficiently detecting errors in insurance claims
    • ACM
    • R. Ghani and M. Kumar. Interactive learning for efficiently detecting errors in insurance claims. In Proceedings of KDD, pages 325-333. ACM, 2011.
    • (2011) Proceedings of KDD , pp. 325-333
    • Ghani, R.1    Kumar, M.2
  • 8
    • 84866014906 scopus 로고    scopus 로고
    • Online display advertising: Targeting and obtrusiveness
    • A. Goldfarb and C. Tucker. Online display advertising: Targeting and obtrusiveness. Marketing Science, 2010.
    • (2010) Marketing Science
    • Goldfarb, A.1    Tucker, C.2
  • 9
    • 69549133517 scopus 로고    scopus 로고
    • Measuring classifier performance: A coherent alternative to the area under the roc curve
    • D. Hand. Measuring classifier performance: a coherent alternative to the area under the roc curve. Machine learning, 77(1):103-123, 2009.
    • (2009) Machine Learning , vol.77 , Issue.1 , pp. 103-123
    • Hand, D.1
  • 11
    • 0000125534 scopus 로고
    • Sample selection bias as a specification error
    • J. Heckman. Sample selection bias as a specification error. Econometrica, pages 153-161, 1979.
    • (1979) Econometrica , pp. 153-161
    • Heckman, J.1
  • 12
    • 79851470099 scopus 로고    scopus 로고
    • Repairing fractures between data using genetic programming-based feature extraction: A case study in cancer diagnosis
    • J. Moreno-Torres, X. Llorà, D. Goldberg, and R. Bhargava. Repairing fractures between data using genetic programming-based feature extraction: A case study in cancer diagnosis. Information Sciences, 2010.
    • (2010) Information Sciences
    • Moreno-Torres, J.1    Llorà, X.2    Goldberg, D.3    Bhargava, R.4
  • 13
    • 31844433358 scopus 로고    scopus 로고
    • Predicting good probabilities with supervised learning
    • ACM
    • A. Niculescu-Mizil and R. Caruana. Predicting good probabilities with supervised learning. In Proceedings of ICML, pages 625-632. ACM, 2005.
    • (2005) Proceedings of ICML , pp. 625-632
    • Niculescu-Mizil, A.1    Caruana, R.2
  • 15
    • 0003120218 scopus 로고    scopus 로고
    • Sequential minimal optimization: A fast algorithm for training support vector machines
    • MSR-TR-98-14
    • J. Platt. Sequential minimal optimization: A fast algorithm for training support vector machines. Advances in Kernel Methods: Support Vector Learning, 208(MSR-TR-98-14):1-21, 1998.
    • (1998) Advances in Kernel Methods: Support Vector Learning , vol.208 , pp. 1-21
    • Platt, J.1
  • 17
    • 33645822091 scopus 로고    scopus 로고
    • Electronic trading in stock markets
    • H. Stoll. Electronic trading in stock markets. J. Economic Perspectives, 20(1):153-174, 2006.
    • (2006) J. Economic Perspectives , vol.20 , Issue.1 , pp. 153-174
    • Stoll, H.1
  • 18
    • 0036696364 scopus 로고    scopus 로고
    • Turning telecommunications call details to churn prediction: A data mining approach
    • C. Wei, I. Chiu, et al. Turning telecommunications call details to churn prediction: a data mining approach. Expert systems with applications, 23(2):103-112, 2002.
    • (2002) Expert Systems with Applications , vol.23 , Issue.2 , pp. 103-112
    • Wei, C.1    Chiu, I.2
  • 19
    • 14344263218 scopus 로고    scopus 로고
    • Learning and evaluating classifiers under sample selection bias
    • ACM
    • B. Zadrozny. Learning and evaluating classifiers under sample selection bias. In Proceedings of ICML, page 114. ACM, 2004.
    • (2004) Proceedings of ICML , pp. 114
    • Zadrozny, B.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.