메뉴 건너뛰기




Volumn , Issue , 2011, Pages 1225-1230

Concept labeling: Building text classifiers with minimal supervision

Author keywords

[No Author keywords available]

Indexed keywords

EMPIRICAL STUDIES; MODERN APPLICATIONS; MULTITASK LEARNING; RAPID CONSTRUCTION; SEMI-SUPERVISED; TEXT CATEGORIZATION; TEXT CLASSIFICATION MODELS; TEXT CLASSIFIERS;

EID: 84866007412     PISSN: 10450823     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.5591/978-1-57735-516-8/IJCAI11-208     Document Type: Conference Paper
Times cited : (32)

References (17)
  • 1
    • 77956208411 scopus 로고    scopus 로고
    • Why label when you can search?: Alternatives to active learning for applying human resources to build classification models under extreme class imbalance
    • J. Attenberg and F. Provost. Why label when you can search?: alternatives to active learning for applying human resources to build classification models under extreme class imbalance. In KDD, 2010.
    • (2010) KDD
    • Attenberg, J.1    Provost, F.2
  • 2
    • 47349109657 scopus 로고    scopus 로고
    • Boosting inductive transfer for text classification using Wikipedia
    • S. Banerjee. Boosting inductive transfer for text classification using Wikipedia. ICMLA, 2007.
    • (2007) ICMLA
    • Banerjee, S.1
  • 3
    • 31844443290 scopus 로고    scopus 로고
    • Regularization and semi-supervised learning on large graphs
    • M. Belkin, I. Matveeva, and P. Niyogi. Regularization and semi-supervised learning on large graphs. In COLT, 2004.
    • (2004) COLT
    • Belkin, M.1    Matveeva, I.2    Niyogi, P.3
  • 4
    • 70449368650 scopus 로고    scopus 로고
    • Discriminative learning under covariate shift
    • December
    • S. Bickel, M. Brückner, and T. Scheffer. Discriminative learning under covariate shift. JMLR, 10:2137-2155, December 2009.
    • (2009) JMLR , vol.10 , pp. 2137-2155
    • Bickel, S.1    Brückner, M.2    Scheffer, T.3
  • 5
    • 84860524227 scopus 로고    scopus 로고
    • Biographies, bollywood, boom-boxes and blenders: Domain adaptation for sentiment classification
    • J. Blitzer, M. Dredze, and F. Pereira. Biographies, bollywood, boom-boxes and blenders: Domain adaptation for sentiment classification. In ACL, 2007.
    • (2007) ACL
    • Blitzer, J.1    Dredze, M.2    Pereira, F.3
  • 7
    • 57349122015 scopus 로고    scopus 로고
    • Learning from labeled features using generalized expectation criteria
    • G. Druck, G. Mann, and A. McCallum. Learning from labeled features using generalized expectation criteria. In SIGIR, 2008.
    • (2008) SIGIR
    • Druck, G.1    Mann, G.2    McCallum, A.3
  • 8
    • 78651341459 scopus 로고    scopus 로고
    • Tagme: On-the-fly annotation of short text fragments (by Wikipedia entities)
    • P. Ferragina and U. Scaiella. Tagme: on-the-fly annotation of short text fragments (by Wikipedia entities). In CIKM, 2010.
    • (2010) CIKM
    • Ferragina, P.1    Scaiella, U.2
  • 9
    • 49949114084 scopus 로고    scopus 로고
    • Overcoming the brittleness bottleneck using Wikipedia: Enhancing text categorization with encyclopedic knowledge
    • E. Gabrilovich and S. Markovitch. Overcoming the brittleness bottleneck using Wikipedia: enhancing text categorization with encyclopedic knowledge. In AAAI, 2006.
    • (2006) AAAI
    • Gabrilovich, E.1    Markovitch, S.2
  • 10
    • 84870491753 scopus 로고    scopus 로고
    • Text categorization with knowledge transfer from heterogeneous data sources
    • R. Gupta and L. Ratinovf. Text categorization with knowledge transfer from heterogeneous data sources. In AAAI, 2008.
    • (2008) AAAI
    • Gupta, R.1    Ratinovf, L.2
  • 12
    • 1942483137 scopus 로고    scopus 로고
    • Transductive inference for text classification using support vector machines
    • June
    • T. Joachims. Transductive inference for text classification using support vector machines. In ICML, June 1999.
    • (1999) ICML
    • Joachims, T.1
  • 15
    • 68949137209 scopus 로고    scopus 로고
    • Active learning literature survey
    • University of Wisconsin-Madison
    • B. Settles. Active learning literature survey. Computer Sciences Technical Report 1648, University of Wisconsin-Madison, 2009.
    • (2009) Computer Sciences Technical Report 1648
    • Settles, B.1
  • 16
    • 65449130494 scopus 로고    scopus 로고
    • Building semantic kernels for text classification using Wikipedia
    • P. Wang and C. Domeniconi. Building semantic kernels for text classification using Wikipedia. KDD, pages 713-721, 2008.
    • (2008) KDD , pp. 713-721
    • Wang, P.1    Domeniconi, C.2
  • 17
    • 31844438615 scopus 로고    scopus 로고
    • Learning from labeled and unlabeled data on a directed graph
    • D. Zhou, J. Huang, and B. Schoelkopf. Learning from labeled and unlabeled data on a directed graph. In ICML, 2005.
    • (2005) ICML
    • Zhou, D.1    Huang, J.2    Schoelkopf, B.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.