메뉴 건너뛰기




Volumn 108, Issue 1, 2012, Pages 250-261

Unsupervised feature relevance analysis applied to improve ECG heartbeat clustering

Author keywords

Electrocardiogram analysis; Feature selection; Heartbeat classification; Q algorithm; Relevance analysis

Indexed keywords

AMOUNT OF INFORMATION; CLINICAL SETTINGS; CLUSTER VALIDITY MEASURES; CLUSTERING SCHEME; CLUSTERING TEST; COMPUTER-ASSISTED ANALYSIS; ELECTROCARDIOGRAM ANALYSIS; FEATURE RELEVANCE; FEATURE WEIGHTING; INPUT FEATURES; LEAST-SQUARES OPTIMIZATION; PROCESSING CAPACITIES; RELEVANCE ANALYSIS; UNSUPERVISED METHOD;

EID: 84865789786     PISSN: 01692607     EISSN: 18727565     Source Type: Journal    
DOI: 10.1016/j.cmpb.2012.04.007     Document Type: Article
Times cited : (34)

References (36)
  • 1
    • 17044405923 scopus 로고    scopus 로고
    • Toward integrating feature selection algorithms for classification and clustering
    • Liu H., Yu L. Toward integrating feature selection algorithms for classification and clustering. IEEE Transactions on Knowledge and Data Engineering 2005, 17(4):491-502. 10.1109/TKDE.2005.66.
    • (2005) IEEE Transactions on Knowledge and Data Engineering , vol.17 , Issue.4 , pp. 491-502
    • Liu, H.1    Yu, L.2
  • 3
    • 7544223741 scopus 로고    scopus 로고
    • A survey of outlier detection methodologies
    • Hodge V., Austin J. A survey of outlier detection methodologies. Artificial Intelligence Review 2004, 22(2):85-126. 10.1023/B:AIRE.0000045502.10941.a9.
    • (2004) Artificial Intelligence Review , vol.22 , Issue.2 , pp. 85-126
    • Hodge, V.1    Austin, J.2
  • 5
  • 6
    • 46549086330 scopus 로고    scopus 로고
    • Medical data mining by fuzzy modeling with selected features
    • Ghazavi S.N., Liao T.W. Medical data mining by fuzzy modeling with selected features. Artificial Intelligence in Medicine 2008, 43:195-206. 10.1016/j.artmed.2008.04.004.
    • (2008) Artificial Intelligence in Medicine , vol.43 , pp. 195-206
    • Ghazavi, S.N.1    Liao, T.W.2
  • 7
    • 67650868981 scopus 로고    scopus 로고
    • Multilead analysis of T-wave alternans in the ECG using principal component analysis
    • Monasterio V., Laguna P., Martínez J.P. Multilead analysis of T-wave alternans in the ECG using principal component analysis. IEEE Transactions on Biomedical Engineering 2009, 6(7):1880-1890.
    • (2009) IEEE Transactions on Biomedical Engineering , vol.6 , Issue.7 , pp. 1880-1890
    • Monasterio, V.1    Laguna, P.2    Martínez, J.P.3
  • 11
    • 79551695716 scopus 로고    scopus 로고
    • The effects of EEG data transformations on the solution accuracy of principal component analysis
    • Arruda J.E., McGee H.A., Zhang H., Stanny C.J. The effects of EEG data transformations on the solution accuracy of principal component analysis. Psychophysiology 2011, 48(3):370-376. 10.1111/j.1469-8986.2010.01067.x.
    • (2011) Psychophysiology , vol.48 , Issue.3 , pp. 370-376
    • Arruda, J.E.1    McGee, H.A.2    Zhang, H.3    Stanny, C.J.4
  • 14
    • 67349272711 scopus 로고    scopus 로고
    • Principal component analysis in mild and moderate alzheimer's disease-a novel approach to clinical diagnosis
    • Pagani R.G.N.D.N.F.M., Salmaso D. Principal component analysis in mild and moderate alzheimer's disease-a novel approach to clinical diagnosis. Psychiatry Research: Neuroimaging 2009, 173:8-14.
    • (2009) Psychiatry Research: Neuroimaging , vol.173 , pp. 8-14
    • Pagani, R.G.N.D.N.F.M.1    Salmaso, D.2
  • 15
    • 30344450458 scopus 로고    scopus 로고
    • Identification of distinct characteristics of postural sway in Parkinson's disease: a feature selection procedure based on principal component analysis
    • Rocchi L., Chiari L., Cappello A., Horak F.B. Identification of distinct characteristics of postural sway in Parkinson's disease: a feature selection procedure based on principal component analysis. Neuroscience Letters 2006, 394(2):140-145.
    • (2006) Neuroscience Letters , vol.394 , Issue.2 , pp. 140-145
    • Rocchi, L.1    Chiari, L.2    Cappello, A.3    Horak, F.B.4
  • 16
    • 70350234937 scopus 로고    scopus 로고
    • Principal component analysis based backpropagation algorithm for diagnosis of peripheral arterial occlusive diseases
    • IEEE
    • Karamchandani S., Desai U.B., Merchant S.N., Jindal G.D. Principal component analysis based backpropagation algorithm for diagnosis of peripheral arterial occlusive diseases. CCECE 2009, 482-485. IEEE.
    • (2009) CCECE , pp. 482-485
    • Karamchandani, S.1    Desai, U.B.2    Merchant, S.N.3    Jindal, G.D.4
  • 17
    • 57649138215 scopus 로고    scopus 로고
    • Diagnosis of breast cancer tumor based on pca and fuzzy support vector machine classifier
    • Luo Z., Wu X., Guo S., Ye B. Diagnosis of breast cancer tumor based on pca and fuzzy support vector machine classifier. International Conference on Natural Computation 2008, 4:363-367. doi:http://doi.ieeecomputersociety.org/10.1109/ICNC.2008.932.
    • (2008) International Conference on Natural Computation , vol.4 , pp. 363-367
    • Luo, Z.1    Wu, X.2    Guo, S.3    Ye, B.4
  • 19
    • 35548956430 scopus 로고    scopus 로고
    • Principal component analysis for data containing outliers and missing elements
    • Serneels S., Verdonck T. Principal component analysis for data containing outliers and missing elements. Computational Statistics and Data Analysis 2008, 52:1712-1727. 10.1016/j.csda.2007.05.024.
    • (2008) Computational Statistics and Data Analysis , vol.52 , pp. 1712-1727
    • Serneels, S.1    Verdonck, T.2
  • 21
    • 27844550205 scopus 로고    scopus 로고
    • Feature selection for unsupervised and supervised inference: the emergence of sparsity in a weight-based approach
    • Wolf L., Shashua A. Feature selection for unsupervised and supervised inference: the emergence of sparsity in a weight-based approach. Journal of Machine Learning 2005, 6:1855-1887.
    • (2005) Journal of Machine Learning , vol.6 , pp. 1855-1887
    • Wolf, L.1    Shashua, A.2
  • 22
    • 14844283547 scopus 로고    scopus 로고
    • PhysioBank, PhysioToolkit, and PhysioNet: components of a new research resource for complex physiologic signals
    • circulation Electronic Pages:
    • Goldberger A.L., Amaral L.A.N., Glass L., Hausdorff J.M., Ivanov P.C., Mark R.G., Mietus J.E., Moody G.B., Peng C.-K., Stanley H.E. PhysioBank, PhysioToolkit, and PhysioNet: components of a new research resource for complex physiologic signals. Circulation 2000, 101(23):e215-e220. circulation Electronic Pages: http://circ.ahajournals.org/cgi/content/full/101/23/e215.
    • (2000) Circulation , vol.101 , Issue.23
    • Goldberger, A.L.1    Amaral, L.A.N.2    Glass, L.3    Hausdorff, J.M.4    Ivanov, P.C.5    Mark, R.G.6    Mietus, J.E.7    Moody, G.B.8    Peng, C.-K.9    Stanley, H.E.10
  • 26
    • 2942709662 scopus 로고    scopus 로고
    • Automatic classification of heartbeats using ecg morphology and heartbeat interval features
    • De-Chazal P., O'Dwyer M., Reilly R. Automatic classification of heartbeats using ecg morphology and heartbeat interval features. IEEE Transaction on Biomedical Engineering 2004, 1(7):1196-1206.
    • (2004) IEEE Transaction on Biomedical Engineering , vol.1 , Issue.7 , pp. 1196-1206
    • De-Chazal, P.1    O'Dwyer, M.2    Reilly, R.3
  • 28
    • 77952011478 scopus 로고    scopus 로고
    • Automatic segmentation of long-term ECG signals corrupted with broadband noise based on Sample Entropy
    • Micó P., Mora M., Cuesta-Frau D., Aboy M. Automatic segmentation of long-term ECG signals corrupted with broadband noise based on Sample Entropy. Computer Methods and Programs in Biomedicine 2010, 98:118-129.
    • (2010) Computer Methods and Programs in Biomedicine , vol.98 , pp. 118-129
    • Micó, P.1    Mora, M.2    Cuesta-Frau, D.3    Aboy, M.4
  • 32
    • 47049090821 scopus 로고    scopus 로고
    • Wavelet transform feature extraction from human PPG, ECG, and EEG signal responses to ELF PEMF exposures: a pilot study
    • Cvetkovic D., Ubeyli E.D., Cosic I. Wavelet transform feature extraction from human PPG, ECG, and EEG signal responses to ELF PEMF exposures: a pilot study. Digital Signal Processing 2008, 18(5):861-874. 10.1016/j.dsp.2007.05.009.
    • (2008) Digital Signal Processing , vol.18 , Issue.5 , pp. 861-874
    • Cvetkovic, D.1    Ubeyli, E.D.2    Cosic, I.3
  • 33
    • 0038724544 scopus 로고    scopus 로고
    • Boosting and microarray data
    • Long P., Vega V. Boosting and microarray data. Machine Learning 2003, 52:31-44.
    • (2003) Machine Learning , vol.52 , pp. 31-44
    • Long, P.1    Vega, V.2
  • 36
    • 0034819175 scopus 로고    scopus 로고
    • J-means: a new local search heuristic for minimum sum of squares clustering
    • Hansen P., Mladenovic N. J-means: a new local search heuristic for minimum sum of squares clustering. Pattern Recognition 2001, 34:405-413.
    • (2001) Pattern Recognition , vol.34 , pp. 405-413
    • Hansen, P.1    Mladenovic, N.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.