메뉴 건너뛰기




Volumn 22, Issue 2, 2012, Pages 429-459

A first-order augmented lagrangian method for compressed sensing

Author keywords

1 minimization; Augmented Lagrangian method; Basis pursuit; Compressed sensing; Denoising; First order method; Sparse optimization

Indexed keywords

1-MINIMIZATION; AUGMENTED LAGRANGIAN METHODS; BASIS PURSUITS; COMPRESSIVE SENSING; DE-NOISING; FIRST ORDER METHOD;

EID: 84865691267     PISSN: 10526234     EISSN: None     Source Type: Journal    
DOI: 10.1137/100786721     Document Type: Article
Times cited : (36)

References (25)
  • 2
    • 79957449870 scopus 로고    scopus 로고
    • A first-order smoothed penalty method for compressed sensing
    • N. S. Aybat and G. Iyengar, A first-order smoothed penalty method for compressed sensing, SIAM J. Optim., 21 (2011), pp. 287-313.
    • (2011) SIAM J. Optim. , vol.21 , pp. 287-313
    • Aybat, N.S.1    Iyengar, G.2
  • 3
    • 85014561619 scopus 로고    scopus 로고
    • A fast iterative shrinkage-thresholding algorithm for linear inverse problems
    • A. Beck and M. Teboulle, A fast iterative shrinkage-thresholding algorithm for linear inverse problems, SIAM J. Imaging Sci., 2 (2009), pp. 183-202.
    • (2009) SIAM J. Imaging Sci. , vol.2 , pp. 183-202
    • Beck, A.1    Teboulle, M.2
  • 4
    • 79551550744 scopus 로고    scopus 로고
    • NESTA: A fast and accurate first-order method for sparse recovery
    • S. Becker, J. Bobin, and E. Candès, NESTA: A fast and accurate first-order method for sparse recovery, SIAM J. Imaging Sci., 4 (2011), pp. 1-39.
    • (2011) SIAM J. Imaging Sci. , vol.4 , pp. 1-39
    • Becker, S.1    Bobin, J.2    Candès, E.3
  • 6
    • 33744726904 scopus 로고    scopus 로고
    • Quantitative robust uncertainty principles and optimally sparse decompositions
    • DOI 10.1007/s10208-004-0162-x
    • E. Candès and J. Romberg, Quantitative robust uncertainty principles and optimally sparse decompositions, Found. Comput. Math., 6 (2006), pp. 227-254. (Pubitemid 43824483)
    • (2006) Foundations of Computational Mathematics , vol.6 , Issue.2 , pp. 227-254
    • Candes, E.J.1    Romberg, J.2
  • 7
    • 33745604236 scopus 로고    scopus 로고
    • Stable signal recovery from incomplete and inaccurate measurements
    • DOI 10.1002/cpa.20124
    • E. J. Candès, J. K. Romberg, and T. Tao, Signal recovery from incomplete and inaccurate measurements, Comm. Pure Appl. Math., 59 (2006), pp. 1207-1223. (Pubitemid 43988295)
    • (2006) Communications on Pure and Applied Mathematics , vol.59 , Issue.8 , pp. 1207-1223
    • Candes, E.J.1    Romberg, J.K.2    Tao, T.3
  • 8
    • 31744440684 scopus 로고    scopus 로고
    • Robust uncertainty principles: Exact signal reconstruction from highly incomplete frequency information
    • DOI 10.1109/TIT.2005.862083
    • E. J. Candès, J. K. Romberg, and T. Tao, Robust uncertainty principles: Exact signal reconstruction from highly incomplete frequency information, IEEE Trans. Inform. Theory, 52 (2006), pp. 489-509. (Pubitemid 43174093)
    • (2006) IEEE Transactions on Information Theory , vol.52 , Issue.2 , pp. 489-509
    • Candes, E.J.1    Romberg, J.2    Tao, T.3
  • 9
    • 33947416035 scopus 로고    scopus 로고
    • Near-optimal signal recovery from random projections: Universal encoding strategies?
    • DOI 10.1109/TIT.2006.885507
    • E. J. Candès and T. Tao, Near optimal signal recovery from random projections: universal encoding strategies? IEEE Trans. Inform. Theory, 52 (2006), pp. 5406-5425. (Pubitemid 46445381)
    • (2006) IEEE Transactions on Information Theory , vol.52 , Issue.12 , pp. 5406-5425
    • Candes, E.J.1    Tao, T.2
  • 10
    • 7044231546 scopus 로고    scopus 로고
    • An iterative thresholding algorithm for linear inverse problems with a sparsity constraint
    • DOI 10.1002/cpa.20042
    • I. Daubechies, M. Defrise, and C. De Mol, An iterative thresholding algorithm for linear inverse problems with a sparsity constraint, Comm. Pure Appl. Math., 57 (2004), pp. 1413-1457. (Pubitemid 39427442)
    • (2004) Communications on Pure and Applied Mathematics , vol.57 , Issue.11 , pp. 1413-1457
    • Daubechies, I.1    Defrise, M.2    De Mol, C.3
  • 11
    • 57349127864 scopus 로고    scopus 로고
    • Accelerated projected gradient method for linear inverse problems with sparsity constraints
    • I. Daubechies, M. Fornasier, and I. Loris, Accelerated projected gradient method for linear inverse problems with sparsity constraints, J. Fourier Anal. Appl., 14 (2008), pp. 764-792.
    • (2008) J. Fourier Anal. Appl. , vol.14 , pp. 764-792
    • Daubechies, I.1    Fornasier, M.2    Loris, I.3
  • 12
  • 14
    • 0000324960 scopus 로고
    • Eigenvalues and condition numbers of random matrices
    • A. Edelman, Eigenvalues and condition numbers of random matrices, SIAM J. Matrix Anal. Appl., 9 (1988), pp. 543-560.
    • (1988) SIAM J. Matrix Anal. Appl. , vol.9 , pp. 543-560
    • Edelman, A.1
  • 15
    • 39449126969 scopus 로고    scopus 로고
    • Gradient projection for sparse reconstruction: Application to compressed sensing and other inverse problems
    • DOI 10.1109/JSTSP.2007.910281
    • M. A. Figueiredo, R. Nowak, and S. J. Wright, Gradient projection for sparse reconstruction: Application to compressed sensing and other inverse problems, IEEE J. Selected Topics in Signal Processing, 1 (2007), pp. 586-597. (Pubitemid 351276802)
    • (2007) IEEE Journal on Selected Topics in Signal Processing , vol.1 , Issue.4 , pp. 586-597
    • Figueiredo, M.A.T.1    Nowak, R.D.2    Wright, S.J.3
  • 17
    • 69649095451 scopus 로고    scopus 로고
    • 1-minimization: Methodology and convergence
    • 1-minimization: Methodology and convergence, SIAM J. Optim., 19 (2008), pp. 1107-1130.
    • (2008) SIAM J. Optim. , vol.19 , pp. 1107-1130
    • Hale, E.T.1    Yin, W.2    Zhang, Y.3
  • 20
    • 17444406259 scopus 로고    scopus 로고
    • Smooth minimization of nonsmooth functions
    • Y. Nesterov, Smooth minimization of nonsmooth functions, Math. Program., 103 (2005), pp. 127-152.
    • (2005) Math. Program. , vol.103 , pp. 127-152
    • Nesterov, Y.1
  • 21
    • 70049111607 scopus 로고    scopus 로고
    • On accelerated proximal gradient methods for convex-concave optimization
    • submitted
    • P. Tseng, On accelerated proximal gradient methods for convex-concave optimization, SIAM J. Optim., submitted.
    • SIAM J. Optim.
    • Tseng, P.1
  • 22
    • 65649137930 scopus 로고    scopus 로고
    • Probing the Pareto frontier for basis pursuit solutions
    • E. Van den Berg and M. P. Friedlander, Probing the Pareto frontier for basis pursuit solutions, SIAM J. Sci. Comput., 31 (2008), pp. 890-912.
    • (2008) SIAM J. Sci. Comput. , vol.31 , pp. 890-912
    • Berg Den E.Van1    Friedlander, M.P.2
  • 23
    • 77955666600 scopus 로고    scopus 로고
    • A fast algorithm for sparse reconstruction based on shrinkage subspace optimization and continuation
    • Z. Wen, W. Yin, D. Goldfarb, and Y. Zhang, A fast algorithm for sparse reconstruction based on shrinkage, subspace optimization, and continuation, SIAM J. Sci. Comput., 32 (2010), pp. 1832-1857.
    • (2010) SIAM J. Sci. Comput. , vol.32 , pp. 1832-1857
    • Wen, Z.1    Yin, W.2    Goldfarb, D.3    Zhang, Y.4
  • 24
    • 78149351664 scopus 로고    scopus 로고
    • 1-problems in compressive sensing
    • CAAM, Rice University, Dallas, TX
    • 1-problems in compressive sensing, Technical Report TR09-37, CAAM, Rice University, Dallas, TX, 2009.
    • (2009) Technical Report TR09-37
    • Yang, J.1    Zhang, Y.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.