메뉴 건너뛰기




Volumn 396, Issue 2, 2012, Pages 772-785

Environmental noise impact on regularity and extinction of population systems with infinite delay

Author keywords

Extinction; Regularity; Stochastic boundedness; Stochastic persistence; Stochastic population system

Indexed keywords


EID: 84865532528     PISSN: 0022247X     EISSN: 10960813     Source Type: Journal    
DOI: 10.1016/j.jmaa.2012.07.017     Document Type: Article
Times cited : (5)

References (32)
  • 1
    • 4344689629 scopus 로고
    • Persistence in stochastic food web models
    • Gard T.C. Persistence in stochastic food web models. Bull. Math. Biol. 1984, 46:357-370.
    • (1984) Bull. Math. Biol. , vol.46 , pp. 357-370
    • Gard, T.C.1
  • 2
    • 38249040858 scopus 로고
    • Stability for multispecies population models in random environments
    • Gard T.C. Stability for multispecies population models in random environments. Nonlinear Anal. 1986, 10:1411-1419.
    • (1986) Nonlinear Anal. , vol.10 , pp. 1411-1419
    • Gard, T.C.1
  • 4
    • 0031150106 scopus 로고    scopus 로고
    • Global asymptotic stability in a nonautonomous Lotka-Volterra type system with infinite delay
    • Bereketoglu H., Gyori I. Global asymptotic stability in a nonautonomous Lotka-Volterra type system with infinite delay. J. Math. Anal. Appl. 1997, 210:279-291.
    • (1997) J. Math. Anal. Appl. , vol.210 , pp. 279-291
    • Bereketoglu, H.1    Gyori, I.2
  • 5
    • 0032138492 scopus 로고    scopus 로고
    • The Lyapunov functionals for delay Lotka-Volterra-type models
    • He X. The Lyapunov functionals for delay Lotka-Volterra-type models. SIAM J. Appl. Math. 1998, 58:1222-1236.
    • (1998) SIAM J. Appl. Math. , vol.58 , pp. 1222-1236
    • He, X.1
  • 6
    • 0001293981 scopus 로고
    • Global stability for infinite delay Lotka-Volterra type system
    • Kuang Y., Smith H.L. Global stability for infinite delay Lotka-Volterra type system. J. Differential Equations 1993, 103:221-246.
    • (1993) J. Differential Equations , vol.103 , pp. 221-246
    • Kuang, Y.1    Smith, H.L.2
  • 7
    • 38249031143 scopus 로고
    • Global stability for large systems of Volterra-Lotka type integrodifferential population delay equations
    • Leung A., Zhou Z. Global stability for large systems of Volterra-Lotka type integrodifferential population delay equations. Nonlinear Anal. 1988, 12:495-505.
    • (1988) Nonlinear Anal. , vol.12 , pp. 495-505
    • Leung, A.1    Zhou, Z.2
  • 8
    • 35248832077 scopus 로고    scopus 로고
    • Periodic solution and almost periodic solution for a nonautonomous Lotka-Volterra dispersal system with infinite delay
    • Meng X., Chen L. Periodic solution and almost periodic solution for a nonautonomous Lotka-Volterra dispersal system with infinite delay. J. Math. Anal. Appl. 2008, 339:125-145.
    • (2008) J. Math. Anal. Appl. , vol.339 , pp. 125-145
    • Meng, X.1    Chen, L.2
  • 9
    • 33747346236 scopus 로고    scopus 로고
    • Persistence in nonautonomous predator-prey systems with infinite delay
    • Teng Z., Rehim M. Persistence in nonautonomous predator-prey systems with infinite delay. J. Comput. Appl. Math. 2006, 197:302-321.
    • (2006) J. Comput. Appl. Math. , vol.197 , pp. 302-321
    • Teng, Z.1    Rehim, M.2
  • 12
    • 1942508139 scopus 로고    scopus 로고
    • Stochastic delay Lotka-Volterra model
    • Bahar A., Mao X. Stochastic delay Lotka-Volterra model. J. Math. Anal. Appl. 2004, 292:364-380.
    • (2004) J. Math. Anal. Appl. , vol.292 , pp. 364-380
    • Bahar, A.1    Mao, X.2
  • 13
    • 0242563961 scopus 로고    scopus 로고
    • Environmental noise supresses explosion in population dynamics
    • Mao X., Marion G., Renshaw E. Environmental noise supresses explosion in population dynamics. Stochastic Process. Appl. 2002, 97:95-110.
    • (2002) Stochastic Process. Appl. , vol.97 , pp. 95-110
    • Mao, X.1    Marion, G.2    Renshaw, E.3
  • 14
    • 14644388229 scopus 로고    scopus 로고
    • Stochastic differential delay equations of population dynamics
    • Mao X., Yuan C., Zou J. Stochastic differential delay equations of population dynamics. J. Math. Anal. Appl. 2005, 304:296-320.
    • (2005) J. Math. Anal. Appl. , vol.304 , pp. 296-320
    • Mao, X.1    Yuan, C.2    Zou, J.3
  • 15
    • 68349133587 scopus 로고    scopus 로고
    • Stochastic Lotka-Volterra system with infinite delay
    • Xu Y., Wu F., Tan Y. Stochastic Lotka-Volterra system with infinite delay. J. Comput. Appl. Math. 2009, 232:472-480.
    • (2009) J. Comput. Appl. Math. , vol.232 , pp. 472-480
    • Xu, Y.1    Wu, F.2    Tan, Y.3
  • 16
    • 24344490836 scopus 로고    scopus 로고
    • Stochastic delay population dynamcis
    • Bahar A., Mao X. Stochastic delay population dynamcis. Int. J. Pure Appl. Math. 2004, 11:377-400.
    • (2004) Int. J. Pure Appl. Math. , vol.11 , pp. 377-400
    • Bahar, A.1    Mao, X.2
  • 17
    • 71249122225 scopus 로고    scopus 로고
    • Positive solution and its asymptotic behaviour of stochastic functional Kolmogorov-type system
    • Wu F., Hu S., Liu Y. Positive solution and its asymptotic behaviour of stochastic functional Kolmogorov-type system. J. Math. Anal. Appl. 2010, 364:104-118.
    • (2010) J. Math. Anal. Appl. , vol.364 , pp. 104-118
    • Wu, F.1    Hu, S.2    Liu, Y.3
  • 18
    • 33746315382 scopus 로고    scopus 로고
    • Delay population dynamics and environmental noise
    • Mao X. Delay population dynamics and environmental noise. Stoch. Dyn. 2005, 5:149-162.
    • (2005) Stoch. Dyn. , vol.5 , pp. 149-162
    • Mao, X.1
  • 19
    • 48849113478 scopus 로고    scopus 로고
    • Stochastic functional Kolmogorov-type population dynamics
    • Wu F., Hu S. Stochastic functional Kolmogorov-type population dynamics. J. Math. Anal. Appl. 2008, 347:534-549.
    • (2008) J. Math. Anal. Appl. , vol.347 , pp. 534-549
    • Wu, F.1    Hu, S.2
  • 20
    • 68349154085 scopus 로고    scopus 로고
    • Stochastic Lotka-Volterra population dynamics with infinite delay
    • Wu F., Xu Y. Stochastic Lotka-Volterra population dynamics with infinite delay. SIAM J. Appl. Math. 2009, 70:641-657.
    • (2009) SIAM J. Appl. Math. , vol.70 , pp. 641-657
    • Wu, F.1    Xu, Y.2
  • 23
    • 34249314701 scopus 로고    scopus 로고
    • Stochastic population dynamics under regime switching
    • Luo Q., Mao X. Stochastic population dynamics under regime switching. J. Math. Anal. Appl. 2007, 334:69-84.
    • (2007) J. Math. Anal. Appl. , vol.334 , pp. 69-84
    • Luo, Q.1    Mao, X.2
  • 24
    • 62549127716 scopus 로고    scopus 로고
    • Stochastic population dynamics under regime switching II
    • Luo Q., Mao X. Stochastic population dynamics under regime switching II. J. Math. Anal. Appl. 2009, 355:577-593.
    • (2009) J. Math. Anal. Appl. , vol.355 , pp. 577-593
    • Luo, Q.1    Mao, X.2
  • 25
    • 72149109277 scopus 로고    scopus 로고
    • On hybrid competitive Lotka-Volterra ecosystems
    • Zhu C., Yin G. On hybrid competitive Lotka-Volterra ecosystems. Nonlinear Anal. 2009, 71:1370-1379.
    • (2009) Nonlinear Anal. , vol.71 , pp. 1370-1379
    • Zhu, C.1    Yin, G.2
  • 26
    • 67349095282 scopus 로고    scopus 로고
    • On competitive Lotka-Volterra model in random environments
    • Zhu C., Yin G. On competitive Lotka-Volterra model in random environments. J. Math. Anal. Appl. 2009, 357:154-170.
    • (2009) J. Math. Anal. Appl. , vol.357 , pp. 154-170
    • Zhu, C.1    Yin, G.2
  • 27
    • 0034888277 scopus 로고    scopus 로고
    • Does population ecology have general law?
    • Turchin P. Does population ecology have general law?. Oikos 2001, 94:17-26.
    • (2001) Oikos , vol.94 , pp. 17-26
    • Turchin, P.1
  • 31
    • 33947105991 scopus 로고    scopus 로고
    • The existence and uniqueness of the solution for stochastic functional differential equations with infinite delay
    • Wei F., Wang K. The existence and uniqueness of the solution for stochastic functional differential equations with infinite delay. J. Math. Anal. Appl. 2007, 331:516-531.
    • (2007) J. Math. Anal. Appl. , vol.331 , pp. 516-531
    • Wei, F.1    Wang, K.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.