-
1
-
-
4344689629
-
Persistence in stochastic food web models
-
Gard T.C. Persistence in stochastic food web models. Bull. Math. Biol. 1984, 46:357-370.
-
(1984)
Bull. Math. Biol.
, vol.46
, pp. 357-370
-
-
Gard, T.C.1
-
2
-
-
38249040858
-
Stability for multispecies population models in random environments
-
Gard T.C. Stability for multispecies population models in random environments. Nonlinear Anal. 1986, 10:1411-1419.
-
(1986)
Nonlinear Anal.
, vol.10
, pp. 1411-1419
-
-
Gard, T.C.1
-
4
-
-
0031150106
-
Global asymptotic stability in a nonautonomous Lotka-Volterra type system with infinite delay
-
Bereketoglu H., Gyori I. Global asymptotic stability in a nonautonomous Lotka-Volterra type system with infinite delay. J. Math. Anal. Appl. 1997, 210:279-291.
-
(1997)
J. Math. Anal. Appl.
, vol.210
, pp. 279-291
-
-
Bereketoglu, H.1
Gyori, I.2
-
5
-
-
0032138492
-
The Lyapunov functionals for delay Lotka-Volterra-type models
-
He X. The Lyapunov functionals for delay Lotka-Volterra-type models. SIAM J. Appl. Math. 1998, 58:1222-1236.
-
(1998)
SIAM J. Appl. Math.
, vol.58
, pp. 1222-1236
-
-
He, X.1
-
6
-
-
0001293981
-
Global stability for infinite delay Lotka-Volterra type system
-
Kuang Y., Smith H.L. Global stability for infinite delay Lotka-Volterra type system. J. Differential Equations 1993, 103:221-246.
-
(1993)
J. Differential Equations
, vol.103
, pp. 221-246
-
-
Kuang, Y.1
Smith, H.L.2
-
7
-
-
38249031143
-
Global stability for large systems of Volterra-Lotka type integrodifferential population delay equations
-
Leung A., Zhou Z. Global stability for large systems of Volterra-Lotka type integrodifferential population delay equations. Nonlinear Anal. 1988, 12:495-505.
-
(1988)
Nonlinear Anal.
, vol.12
, pp. 495-505
-
-
Leung, A.1
Zhou, Z.2
-
8
-
-
35248832077
-
Periodic solution and almost periodic solution for a nonautonomous Lotka-Volterra dispersal system with infinite delay
-
Meng X., Chen L. Periodic solution and almost periodic solution for a nonautonomous Lotka-Volterra dispersal system with infinite delay. J. Math. Anal. Appl. 2008, 339:125-145.
-
(2008)
J. Math. Anal. Appl.
, vol.339
, pp. 125-145
-
-
Meng, X.1
Chen, L.2
-
9
-
-
33747346236
-
Persistence in nonautonomous predator-prey systems with infinite delay
-
Teng Z., Rehim M. Persistence in nonautonomous predator-prey systems with infinite delay. J. Comput. Appl. Math. 2006, 197:302-321.
-
(2006)
J. Comput. Appl. Math.
, vol.197
, pp. 302-321
-
-
Teng, Z.1
Rehim, M.2
-
12
-
-
1942508139
-
Stochastic delay Lotka-Volterra model
-
Bahar A., Mao X. Stochastic delay Lotka-Volterra model. J. Math. Anal. Appl. 2004, 292:364-380.
-
(2004)
J. Math. Anal. Appl.
, vol.292
, pp. 364-380
-
-
Bahar, A.1
Mao, X.2
-
13
-
-
0242563961
-
Environmental noise supresses explosion in population dynamics
-
Mao X., Marion G., Renshaw E. Environmental noise supresses explosion in population dynamics. Stochastic Process. Appl. 2002, 97:95-110.
-
(2002)
Stochastic Process. Appl.
, vol.97
, pp. 95-110
-
-
Mao, X.1
Marion, G.2
Renshaw, E.3
-
14
-
-
14644388229
-
Stochastic differential delay equations of population dynamics
-
Mao X., Yuan C., Zou J. Stochastic differential delay equations of population dynamics. J. Math. Anal. Appl. 2005, 304:296-320.
-
(2005)
J. Math. Anal. Appl.
, vol.304
, pp. 296-320
-
-
Mao, X.1
Yuan, C.2
Zou, J.3
-
15
-
-
68349133587
-
Stochastic Lotka-Volterra system with infinite delay
-
Xu Y., Wu F., Tan Y. Stochastic Lotka-Volterra system with infinite delay. J. Comput. Appl. Math. 2009, 232:472-480.
-
(2009)
J. Comput. Appl. Math.
, vol.232
, pp. 472-480
-
-
Xu, Y.1
Wu, F.2
Tan, Y.3
-
16
-
-
24344490836
-
Stochastic delay population dynamcis
-
Bahar A., Mao X. Stochastic delay population dynamcis. Int. J. Pure Appl. Math. 2004, 11:377-400.
-
(2004)
Int. J. Pure Appl. Math.
, vol.11
, pp. 377-400
-
-
Bahar, A.1
Mao, X.2
-
17
-
-
71249122225
-
Positive solution and its asymptotic behaviour of stochastic functional Kolmogorov-type system
-
Wu F., Hu S., Liu Y. Positive solution and its asymptotic behaviour of stochastic functional Kolmogorov-type system. J. Math. Anal. Appl. 2010, 364:104-118.
-
(2010)
J. Math. Anal. Appl.
, vol.364
, pp. 104-118
-
-
Wu, F.1
Hu, S.2
Liu, Y.3
-
18
-
-
33746315382
-
Delay population dynamics and environmental noise
-
Mao X. Delay population dynamics and environmental noise. Stoch. Dyn. 2005, 5:149-162.
-
(2005)
Stoch. Dyn.
, vol.5
, pp. 149-162
-
-
Mao, X.1
-
19
-
-
48849113478
-
Stochastic functional Kolmogorov-type population dynamics
-
Wu F., Hu S. Stochastic functional Kolmogorov-type population dynamics. J. Math. Anal. Appl. 2008, 347:534-549.
-
(2008)
J. Math. Anal. Appl.
, vol.347
, pp. 534-549
-
-
Wu, F.1
Hu, S.2
-
20
-
-
68349154085
-
Stochastic Lotka-Volterra population dynamics with infinite delay
-
Wu F., Xu Y. Stochastic Lotka-Volterra population dynamics with infinite delay. SIAM J. Appl. Math. 2009, 70:641-657.
-
(2009)
SIAM J. Appl. Math.
, vol.70
, pp. 641-657
-
-
Wu, F.1
Xu, Y.2
-
23
-
-
34249314701
-
Stochastic population dynamics under regime switching
-
Luo Q., Mao X. Stochastic population dynamics under regime switching. J. Math. Anal. Appl. 2007, 334:69-84.
-
(2007)
J. Math. Anal. Appl.
, vol.334
, pp. 69-84
-
-
Luo, Q.1
Mao, X.2
-
24
-
-
62549127716
-
Stochastic population dynamics under regime switching II
-
Luo Q., Mao X. Stochastic population dynamics under regime switching II. J. Math. Anal. Appl. 2009, 355:577-593.
-
(2009)
J. Math. Anal. Appl.
, vol.355
, pp. 577-593
-
-
Luo, Q.1
Mao, X.2
-
25
-
-
72149109277
-
On hybrid competitive Lotka-Volterra ecosystems
-
Zhu C., Yin G. On hybrid competitive Lotka-Volterra ecosystems. Nonlinear Anal. 2009, 71:1370-1379.
-
(2009)
Nonlinear Anal.
, vol.71
, pp. 1370-1379
-
-
Zhu, C.1
Yin, G.2
-
26
-
-
67349095282
-
On competitive Lotka-Volterra model in random environments
-
Zhu C., Yin G. On competitive Lotka-Volterra model in random environments. J. Math. Anal. Appl. 2009, 357:154-170.
-
(2009)
J. Math. Anal. Appl.
, vol.357
, pp. 154-170
-
-
Zhu, C.1
Yin, G.2
-
27
-
-
0034888277
-
Does population ecology have general law?
-
Turchin P. Does population ecology have general law?. Oikos 2001, 94:17-26.
-
(2001)
Oikos
, vol.94
, pp. 17-26
-
-
Turchin, P.1
-
31
-
-
33947105991
-
The existence and uniqueness of the solution for stochastic functional differential equations with infinite delay
-
Wei F., Wang K. The existence and uniqueness of the solution for stochastic functional differential equations with infinite delay. J. Math. Anal. Appl. 2007, 331:516-531.
-
(2007)
J. Math. Anal. Appl.
, vol.331
, pp. 516-531
-
-
Wei, F.1
Wang, K.2
|