메뉴 건너뛰기




Volumn 364, Issue 1, 2010, Pages 104-118

Positive solution and its asymptotic behaviour of stochastic functional Kolmogorov-type system

Author keywords

Kolmogorov type system; Lotka Volterra system; Moment average in time; Stochastic functional differential equations; Stochastically ultimate boundedness

Indexed keywords


EID: 71249122225     PISSN: 0022247X     EISSN: 10960813     Source Type: Journal    
DOI: 10.1016/j.jmaa.2009.10.072     Document Type: Article
Times cited : (28)

References (15)
  • 1
    • 1942508139 scopus 로고    scopus 로고
    • Stochastic delay Lotka-Volterra model
    • Bahar A., and Mao X. Stochastic delay Lotka-Volterra model. J. Math. Anal. Appl. 292 (2004) 364-380
    • (2004) J. Math. Anal. Appl. , vol.292 , pp. 364-380
    • Bahar, A.1    Mao, X.2
  • 2
    • 24344490836 scopus 로고    scopus 로고
    • Stochastic delay population dynamics
    • Bahar A., and Mao X. Stochastic delay population dynamics. Int. J. Pure Appl. Math. 11 (2004) 377-400
    • (2004) Int. J. Pure Appl. Math. , vol.11 , pp. 377-400
    • Bahar, A.1    Mao, X.2
  • 3
    • 38549148451 scopus 로고    scopus 로고
    • Local and global stability for Lotka-Volterra systems with distributed delays and instantaneous negative feedbacks
    • Faria T., and Oliveira J.J. Local and global stability for Lotka-Volterra systems with distributed delays and instantaneous negative feedbacks. J. Differential Equations 244 (2008) 1049-1079
    • (2008) J. Differential Equations , vol.244 , pp. 1049-1079
    • Faria, T.1    Oliveira, J.J.2
  • 4
    • 48849083289 scopus 로고    scopus 로고
    • A functional equation characterizing monomial functions used in permanence theory for ecological differential equation
    • B.M. Gary, A functional equation characterizing monomial functions used in permanence theory for ecological differential equation, in: Universitatis Iagellonicae Acta Mathematica, Fasciculus XLII, 2004
    • (2004) Universitatis Iagellonicae Acta Mathematica, Fasciculus XLII
    • Gary, B.M.1
  • 5
    • 33745182348 scopus 로고    scopus 로고
    • Persistence and average persistence of a nonautonomous Kolmogorov system
    • Han X., Teng Z., and Xiao D. Persistence and average persistence of a nonautonomous Kolmogorov system. Chaos Solitons Fractals 30 (2006) 748-758
    • (2006) Chaos Solitons Fractals , vol.30 , pp. 748-758
    • Han, X.1    Teng, Z.2    Xiao, D.3
  • 9
    • 0242563961 scopus 로고    scopus 로고
    • Environmental noise suppresses explosion in population dynamics
    • Mao X., Marion G., and Renshaw E. Environmental noise suppresses explosion in population dynamics. Stochastic Process. Appl. 97 (2002) 95-110
    • (2002) Stochastic Process. Appl. , vol.97 , pp. 95-110
    • Mao, X.1    Marion, G.2    Renshaw, E.3
  • 10
    • 33746315382 scopus 로고    scopus 로고
    • Delay population dynamics and environmental noise
    • Mao X. Delay population dynamics and environmental noise. Stoch. Dyn. 5 (2005) 149-162
    • (2005) Stoch. Dyn. , vol.5 , pp. 149-162
    • Mao, X.1
  • 13
    • 0029690373 scopus 로고    scopus 로고
    • Permanence in Kolmogorov-type systems of nonautonomous functional differential equations
    • Tang B., and Kuang Y. Permanence in Kolmogorov-type systems of nonautonomous functional differential equations. J. Math. Anal. Appl. 197 (1996) 427-447
    • (1996) J. Math. Anal. Appl. , vol.197 , pp. 427-447
    • Tang, B.1    Kuang, Y.2
  • 14
    • 0343826890 scopus 로고    scopus 로고
    • The almost periodic Kolmogorov competitive systems
    • Teng Z. The almost periodic Kolmogorov competitive systems. Nonlinear Anal. 42 (2000) 1221-1230
    • (2000) Nonlinear Anal. , vol.42 , pp. 1221-1230
    • Teng, Z.1
  • 15
    • 48849113478 scopus 로고    scopus 로고
    • Stochastic functional Kolmogorov-type population dynamics
    • Wu F., and Hu S. Stochastic functional Kolmogorov-type population dynamics. J. Math. Anal. Appl. 347 (2008) 534-549
    • (2008) J. Math. Anal. Appl. , vol.347 , pp. 534-549
    • Wu, F.1    Hu, S.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.