-
1
-
-
1942508139
-
Stochastic delay Lotka-Volterra model
-
Bahar A., and Mao X. Stochastic delay Lotka-Volterra model. J. Math. Anal. Appl. 292 (2004) 364-380
-
(2004)
J. Math. Anal. Appl.
, vol.292
, pp. 364-380
-
-
Bahar, A.1
Mao, X.2
-
2
-
-
24344490836
-
Stochastic delay population dynamics
-
Bahar A., and Mao X. Stochastic delay population dynamics. Int. J. Pure Appl. Math. 11 (2004) 377-400
-
(2004)
Int. J. Pure Appl. Math.
, vol.11
, pp. 377-400
-
-
Bahar, A.1
Mao, X.2
-
3
-
-
38549148451
-
Local and global stability for Lotka-Volterra systems with distributed delays and instantaneous negative feedbacks
-
Faria T., and Oliveira J.J. Local and global stability for Lotka-Volterra systems with distributed delays and instantaneous negative feedbacks. J. Differential Equations 244 (2008) 1049-1079
-
(2008)
J. Differential Equations
, vol.244
, pp. 1049-1079
-
-
Faria, T.1
Oliveira, J.J.2
-
4
-
-
48849083289
-
A functional equation characterizing monomial functions used in permanence theory for ecological differential equation
-
B.M. Gary, A functional equation characterizing monomial functions used in permanence theory for ecological differential equation, in: Universitatis Iagellonicae Acta Mathematica, Fasciculus XLII, 2004
-
(2004)
Universitatis Iagellonicae Acta Mathematica, Fasciculus XLII
-
-
Gary, B.M.1
-
5
-
-
33745182348
-
Persistence and average persistence of a nonautonomous Kolmogorov system
-
Han X., Teng Z., and Xiao D. Persistence and average persistence of a nonautonomous Kolmogorov system. Chaos Solitons Fractals 30 (2006) 748-758
-
(2006)
Chaos Solitons Fractals
, vol.30
, pp. 748-758
-
-
Han, X.1
Teng, Z.2
Xiao, D.3
-
9
-
-
0242563961
-
Environmental noise suppresses explosion in population dynamics
-
Mao X., Marion G., and Renshaw E. Environmental noise suppresses explosion in population dynamics. Stochastic Process. Appl. 97 (2002) 95-110
-
(2002)
Stochastic Process. Appl.
, vol.97
, pp. 95-110
-
-
Mao, X.1
Marion, G.2
Renshaw, E.3
-
10
-
-
33746315382
-
Delay population dynamics and environmental noise
-
Mao X. Delay population dynamics and environmental noise. Stoch. Dyn. 5 (2005) 149-162
-
(2005)
Stoch. Dyn.
, vol.5
, pp. 149-162
-
-
Mao, X.1
-
13
-
-
0029690373
-
Permanence in Kolmogorov-type systems of nonautonomous functional differential equations
-
Tang B., and Kuang Y. Permanence in Kolmogorov-type systems of nonautonomous functional differential equations. J. Math. Anal. Appl. 197 (1996) 427-447
-
(1996)
J. Math. Anal. Appl.
, vol.197
, pp. 427-447
-
-
Tang, B.1
Kuang, Y.2
-
14
-
-
0343826890
-
The almost periodic Kolmogorov competitive systems
-
Teng Z. The almost periodic Kolmogorov competitive systems. Nonlinear Anal. 42 (2000) 1221-1230
-
(2000)
Nonlinear Anal.
, vol.42
, pp. 1221-1230
-
-
Teng, Z.1
-
15
-
-
48849113478
-
Stochastic functional Kolmogorov-type population dynamics
-
Wu F., and Hu S. Stochastic functional Kolmogorov-type population dynamics. J. Math. Anal. Appl. 347 (2008) 534-549
-
(2008)
J. Math. Anal. Appl.
, vol.347
, pp. 534-549
-
-
Wu, F.1
Hu, S.2
|