메뉴 건너뛰기




Volumn 1266, Issue 1, 2012, Pages 171-178

Current insights into neutrophil homeostasis

Author keywords

Granulopoiesis; Homeostasis; Neutropenia

Indexed keywords

GRANULOCYTE COLONY STIMULATING FACTOR; GRANULOCYTE COLONY STIMULATING FACTOR RECEPTOR; INTERLEUKIN 17; TOLL LIKE RECEPTOR;

EID: 84865352767     PISSN: 00778923     EISSN: 17496632     Source Type: Book Series    
DOI: 10.1111/j.1749-6632.2012.06607.x     Document Type: Article
Times cited : (55)

References (61)
  • 1
    • 0017183786 scopus 로고
    • Neutrophil kinetics in man
    • Dancey, J.T. et al 1976. Neutrophil kinetics in man. J. Clin. Invest. 58: 705-715.
    • (1976) J. Clin. Invest. , vol.58 , pp. 705-715
    • Dancey, J.T.1
  • 2
    • 0025885415 scopus 로고
    • Granulocyte colony-stimulating factor and its receptor
    • Demetri, G.D. & J.D. Griffin 1991. Granulocyte colony-stimulating factor and its receptor. Blood 78: 2791-2808.
    • (1991) Blood , vol.78 , pp. 2791-2808
    • Demetri, G.D.1    Griffin, J.D.2
  • 3
    • 34247515937 scopus 로고    scopus 로고
    • White blood cell count and mortality in the Baltimore longitudinal study of aging
    • Ruggiero, C. et al 2007. White blood cell count and mortality in the Baltimore longitudinal study of aging. J. Am. Coll. Cardiol. 49: 1841-1850.
    • (2007) J. Am. Coll. Cardiol. , vol.49 , pp. 1841-1850
    • Ruggiero, C.1
  • 4
    • 0036800086 scopus 로고    scopus 로고
    • G-CSF is an essential regulator of neutrophil trafficking from the bone marrow to the blood
    • Semerad, C.L. et al 2002. G-CSF is an essential regulator of neutrophil trafficking from the bone marrow to the blood. Immunity 17: 413-423.
    • (2002) Immunity , vol.17 , pp. 413-423
    • Semerad, C.L.1
  • 5
    • 38349157811 scopus 로고    scopus 로고
    • Hematopoietic cytokines
    • Metcalf, D. 2008. Hematopoietic cytokines. Blood 111: 485-491.
    • (2008) Blood , vol.111 , pp. 485-491
    • Metcalf, D.1
  • 6
    • 0024452264 scopus 로고
    • Evidence for a novel in vivo control mechanism of granulopoiesis: mature cell-related control of a regulatory growth factor
    • Layton, J.E. et al 1989. Evidence for a novel in vivo control mechanism of granulopoiesis: mature cell-related control of a regulatory growth factor. Blood 74: 1303-1307.
    • (1989) Blood , vol.74 , pp. 1303-1307
    • Layton, J.E.1
  • 7
    • 0028000668 scopus 로고
    • Mice lacking granulocyte colony-stimulating factor have chronic neutropenia, granulocyte and macrophage progenitor cell deficiency, and impaired neutrophil mobilization
    • Lieschke, G.J. et al 1994. Mice lacking granulocyte colony-stimulating factor have chronic neutropenia, granulocyte and macrophage progenitor cell deficiency, and impaired neutrophil mobilization. Blood 84: 1737-1746.
    • (1994) Blood , vol.84 , pp. 1737-1746
    • Lieschke, G.J.1
  • 8
    • 0030292823 scopus 로고    scopus 로고
    • Impaired production and increased apoptosis of neutrophils in granulocyte colony-stimulating factor receptor-deficient mice
    • Liu, F. et al 1996. Impaired production and increased apoptosis of neutrophils in granulocyte colony-stimulating factor receptor-deficient mice. Immunity 5: 491-501.
    • (1996) Immunity , vol.5 , pp. 491-501
    • Liu, F.1
  • 9
    • 44449087304 scopus 로고    scopus 로고
    • Granulocyte colony-stimulating factor: molecular mechanisms of action during steady state and 'emergency' hematopoiesis
    • Panopoulos, A.D. & S.S. Watowich. 2008. Granulocyte colony-stimulating factor: molecular mechanisms of action during steady state and 'emergency' hematopoiesis. Cytokine 42: 277-288.
    • (2008) Cytokine , vol.42 , pp. 277-288
    • Panopoulos, A.D.1    Watowich, S.S.2
  • 10
    • 0028100831 scopus 로고
    • Production of human granulocyte colony stimulating factor by various kinds of stromal cells in vitro detected by enzyme immunoassay and in situ hybridization
    • Watari, K. et al 1994. Production of human granulocyte colony stimulating factor by various kinds of stromal cells in vitro detected by enzyme immunoassay and in situ hybridization. Stem Cells 12: 416-423.
    • (1994) Stem Cells , vol.12 , pp. 416-423
    • Watari, K.1
  • 11
    • 0035761425 scopus 로고    scopus 로고
    • Increased granulopoiesis through interleukin-17 and granulocyte colony-stimulating factor in leukocyte adhesion molecule-deficient mice
    • Forlow, S.B. et al 2001. Increased granulopoiesis through interleukin-17 and granulocyte colony-stimulating factor in leukocyte adhesion molecule-deficient mice. Blood 98: 3309-3314.
    • (2001) Blood , vol.98 , pp. 3309-3314
    • Forlow, S.B.1
  • 12
    • 84865362090 scopus 로고    scopus 로고
    • Neutropenia-induced feedback G-CSF production is regulated on the transcriptional level independent from the presence of commensal germs
    • Bugl, S. et al 2011. Neutropenia-induced feedback G-CSF production is regulated on the transcriptional level independent from the presence of commensal germs. Onkologie 34: 116.
    • (2011) Onkologie , vol.34 , pp. 116
    • Bugl, S.1
  • 13
    • 77956025424 scopus 로고    scopus 로고
    • In vivo labeling with 2H2O reveals a human neutrophil lifespan of 5.4 days
    • Pillay, J. et al 2010. In vivo labeling with 2H2O reveals a human neutrophil lifespan of 5.4 days. Blood 116: 625-627.
    • (2010) Blood , vol.116 , pp. 625-627
    • Pillay, J.1
  • 14
    • 79958002788 scopus 로고    scopus 로고
    • Doubts concerning the recently reported human neutrophil lifespan of 5.4 days
    • Tofts, P.S. et al 2011. Doubts concerning the recently reported human neutrophil lifespan of 5.4 days. Blood 117: 6050-6052.
    • (2011) Blood , vol.117 , pp. 6050-6052
    • Tofts, P.S.1
  • 15
    • 54049148978 scopus 로고    scopus 로고
    • Homeostatic regulation of blood neutrophil counts
    • von Vietinghoff, S. & K. Ley 2008. Homeostatic regulation of blood neutrophil counts. J. Immunol. 181: 5183-5188.
    • (2008) J. Immunol. , vol.181 , pp. 5183-5188
    • von Vietinghoff, S.1    Ley, K.2
  • 16
    • 0142188265 scopus 로고    scopus 로고
    • Chemokines acting via CXCR2 and CXCR4 control the release of neutrophils from the bone marrow and their return following senescence
    • Martin, C. et al 2003. Chemokines acting via CXCR2 and CXCR4 control the release of neutrophils from the bone marrow and their return following senescence. Immunity 19: 583-593.
    • (2003) Immunity , vol.19 , pp. 583-593
    • Martin, C.1
  • 17
    • 51349114210 scopus 로고    scopus 로고
    • The role of the bone marrow in neutrophil clearance under homeostatic conditions in the mouse
    • Furze, R.C. & S.M. Rankin 2008. The role of the bone marrow in neutrophil clearance under homeostatic conditions in the mouse. FASEB J. 22: 3111-3119.
    • (2008) FASEB J. , vol.22 , pp. 3111-3119
    • Furze, R.C.1    Rankin, S.M.2
  • 18
    • 41449105534 scopus 로고    scopus 로고
    • Constitutive neutrophil apoptosis: mechanisms and regulation
    • Luo, H.R. & F. Loison 2008. Constitutive neutrophil apoptosis: mechanisms and regulation. Am. J. Hematol. 83: 288-295.
    • (2008) Am. J. Hematol. , vol.83 , pp. 288-295
    • Luo, H.R.1    Loison, F.2
  • 19
    • 24144465889 scopus 로고    scopus 로고
    • Molecular determinants of crosstalk between nuclear receptors and toll-like receptors
    • Ogawa, S. et al 2005. Molecular determinants of crosstalk between nuclear receptors and toll-like receptors. Cell 122: 707-721.
    • (2005) Cell , vol.122 , pp. 707-721
    • Ogawa, S.1
  • 20
    • 84855414471 scopus 로고    scopus 로고
    • Cleavage of annexin A1 by ADAM10 during secondary necrosis generates a monocytic "Find-Me" signal
    • Blume, K.E. et al 2012. Cleavage of annexin A1 by ADAM10 during secondary necrosis generates a monocytic "Find-Me" signal. J. Immunol. 188: 135-145.
    • (2012) J. Immunol. , vol.188 , pp. 135-145
    • Blume, K.E.1
  • 21
    • 84255160975 scopus 로고    scopus 로고
    • Dual functions of cell-autonomous and non-cell-autonomous ADAM10 activity in granulopoiesis
    • Yoda, M. et al 2011. Dual functions of cell-autonomous and non-cell-autonomous ADAM10 activity in granulopoiesis. Blood 118: 6939-6942.
    • (2011) Blood , vol.118 , pp. 6939-6942
    • Yoda, M.1
  • 22
    • 84855427447 scopus 로고    scopus 로고
    • Coordinate regulation of neutrophil homeostasis by liver X receptors in mice
    • Hong, C. et al 2012. Coordinate regulation of neutrophil homeostasis by liver X receptors in mice. J. Clin. Invest 122: 337-347.
    • (2012) J. Clin. Invest , vol.122 , pp. 337-347
    • Hong, C.1
  • 23
    • 0037324340 scopus 로고    scopus 로고
    • Reciprocal regulation of inflammation and lipid metabolism by liver X receptors
    • Joseph, S.B. et al 2003. Reciprocal regulation of inflammation and lipid metabolism by liver X receptors. Nat. Med. 9: 213-219.
    • (2003) Nat. Med. , vol.9 , pp. 213-219
    • Joseph, S.B.1
  • 24
    • 78751508599 scopus 로고    scopus 로고
    • Regulation of steady-state neutrophil homeostasis by macrophages
    • Gordy, C. et al 2011. Regulation of steady-state neutrophil homeostasis by macrophages. Blood 117: 618-629.
    • (2011) Blood , vol.117 , pp. 618-629
    • Gordy, C.1
  • 25
    • 57449109064 scopus 로고    scopus 로고
    • Lack of conventional dendritic cells is compatible with normal development and T cell homeostasis, but causes myeloid proliferative syndrome
    • Birnberg, T. et al 2008. Lack of conventional dendritic cells is compatible with normal development and T cell homeostasis, but causes myeloid proliferative syndrome. Immunity 29: 986-997.
    • (2008) Immunity , vol.29 , pp. 986-997
    • Birnberg, T.1
  • 26
    • 79951694373 scopus 로고    scopus 로고
    • Bone marrow CD169+ macrophages promote the retention of hematopoietic stem and progenitor cells in the mesenchymal stem cell niche
    • Chow, A. et al 2011. Bone marrow CD169+ macrophages promote the retention of hematopoietic stem and progenitor cells in the mesenchymal stem cell niche. J. Exp. Med. 208: 261-271.
    • (2011) J. Exp. Med. , vol.208 , pp. 261-271
    • Chow, A.1
  • 27
    • 15244344110 scopus 로고    scopus 로고
    • Phagocytosis of apoptotic neutrophils regulates granulopoiesis via IL-23 and IL-17
    • Stark, M.A. et al 2005. Phagocytosis of apoptotic neutrophils regulates granulopoiesis via IL-23 and IL-17. Immunity 22: 285-294.
    • (2005) Immunity , vol.22 , pp. 285-294
    • Stark, M.A.1
  • 28
    • 0033638507 scopus 로고    scopus 로고
    • Novel p19 protein engages IL-12p40 to form a cytokine, IL-23, with biological activities similar as well as distinct from IL-12
    • Oppmann, B. et al 2000. Novel p19 protein engages IL-12p40 to form a cytokine, IL-23, with biological activities similar as well as distinct from IL-12. Immunity 13: 715-725.
    • (2000) Immunity , vol.13 , pp. 715-725
    • Oppmann, B.1
  • 29
    • 33846966636 scopus 로고    scopus 로고
    • A brief history of T(H)17, the first major revision in the T(H)1/T(H)2 hypothesis of T cell-mediated tissue damage
    • Steinman, L. 2007. A brief history of T(H)17, the first major revision in the T(H)1/T(H)2 hypothesis of T cell-mediated tissue damage. Nat. Med. 13: 139-145.
    • (2007) Nat. Med. , vol.13 , pp. 139-145
    • Steinman, L.1
  • 30
    • 79957874608 scopus 로고    scopus 로고
    • Inflammation triggers emergency granulopoiesis through a density-dependent feedback mechanism
    • Cain, D.W. et al 2011. Inflammation triggers emergency granulopoiesis through a density-dependent feedback mechanism. PLoS. One 6: e19957.
    • (2011) PLoS.One , vol.6
    • Cain, D.W.1
  • 31
    • 77954143695 scopus 로고    scopus 로고
    • Innate IL-17-producing cells: the sentinels of the immune system
    • Cua, D.J. & C.M. Tato 2010. Innate IL-17-producing cells: the sentinels of the immune system. Nat. Rev. Immunol. 10: 479-489.
    • (2010) Nat. Rev. Immunol. , vol.10 , pp. 479-489
    • Cua, D.J.1    Tato, C.M.2
  • 32
    • 84865378652 scopus 로고    scopus 로고
    • Lymphocytes are dispensable in neutrophil homeostasis
    • Bugl, S. et al 2010. Lymphocytes are dispensable in neutrophil homeostasis. Blood 116: 1080.
    • (2010) Blood , vol.116 , pp. 1080
    • Bugl, S.1
  • 33
    • 77951926024 scopus 로고    scopus 로고
    • Cutting edge: bacterial infection induces hematopoietic stem and progenitor cell expansion in the absence of TLR signaling
    • Scumpia, P.O. et al 2010. Cutting edge: bacterial infection induces hematopoietic stem and progenitor cell expansion in the absence of TLR signaling. J. Immunol. 184: 2247-2251.
    • (2010) J. Immunol. , vol.184 , pp. 2247-2251
    • Scumpia, P.O.1
  • 34
    • 66549108083 scopus 로고    scopus 로고
    • CXCR4 is a key regulator of neutrophil release from the bone marrow under basal and stress granulopoiesis conditions
    • Eash, K.J. et al 2009. CXCR4 is a key regulator of neutrophil release from the bone marrow under basal and stress granulopoiesis conditions. Blood 113: 4711-4719.
    • (2009) Blood , vol.113 , pp. 4711-4719
    • Eash, K.J.1
  • 35
    • 0033119201 scopus 로고    scopus 로고
    • The chemokine receptor CXCR4 is required for the retention of B lineage and granulocytic precursors within the bone marrow microenvironment
    • Ma, Q., D. Jones & T.A. Springer 1999. The chemokine receptor CXCR4 is required for the retention of B lineage and granulocytic precursors within the bone marrow microenvironment. Immunity 10: 463-471.
    • (1999) Immunity , vol.10 , pp. 463-471
    • Ma, Q.1    Jones, D.2    Springer, T.A.3
  • 36
    • 0036302147 scopus 로고    scopus 로고
    • G-CSF induces stem cell mobilization by decreasing bone marrow SDF-1 and up-regulating CXCR4
    • Petit, I. et al 2002. G-CSF induces stem cell mobilization by decreasing bone marrow SDF-1 and up-regulating CXCR4. Nat. Immunol. 3: 687-694.
    • (2002) Nat. Immunol. , vol.3 , pp. 687-694
    • Petit, I.1
  • 37
    • 77954974268 scopus 로고    scopus 로고
    • CXCR2 and CXCR4 antagonistically regulate neutrophil trafficking from murine bone marrow
    • Eash, K.J. et al 2010. CXCR2 and CXCR4 antagonistically regulate neutrophil trafficking from murine bone marrow. J. Clin. Invest 120: 2423-2431.
    • (2010) J. Clin. Invest , vol.120 , pp. 2423-2431
    • Eash, K.J.1
  • 38
    • 79960532406 scopus 로고    scopus 로고
    • Neutrophil mobilization from the bone marrow during polymicrobial sepsis is dependent on CXCL12 signaling
    • Delano, M.J. et al 2011. Neutrophil mobilization from the bone marrow during polymicrobial sepsis is dependent on CXCL12 signaling. J. Immunol. 187: 911-918.
    • (2011) J. Immunol. , vol.187 , pp. 911-918
    • Delano, M.J.1
  • 39
    • 73249125588 scopus 로고    scopus 로고
    • Gr-1 antibody induces STAT signaling, macrophage marker expression and abrogation of myeloid-derived suppressor cell activity in BM cells
    • Ribechini, E., P.J. Leenen & M.B. Lutz. 2009. Gr-1 antibody induces STAT signaling, macrophage marker expression and abrogation of myeloid-derived suppressor cell activity in BM cells. Eur. J. Immunol. 39: 3538-3551.
    • (2009) Eur. J. Immunol. , vol.39 , pp. 3538-3551
    • Ribechini, E.1    Leenen, P.J.2    Lutz, M.B.3
  • 40
    • 38149005534 scopus 로고    scopus 로고
    • Use of Ly6G-specific monoclonal antibody to deplete neutrophils in mice
    • Daley, J.M. et al 2008. Use of Ly6G-specific monoclonal antibody to deplete neutrophils in mice. J. Leukoc. Biol. 83: 64-70.
    • (2008) J. Leukoc. Biol. , vol.83 , pp. 64-70
    • Daley, J.M.1
  • 41
    • 34250331610 scopus 로고    scopus 로고
    • A microenvironment-induced myeloproliferative syndrome caused by retinoic acid receptor gamma deficiency
    • Walkley, C.R. et al 2007. A microenvironment-induced myeloproliferative syndrome caused by retinoic acid receptor gamma deficiency. Cell 129: 1097-1110.
    • (2007) Cell , vol.129 , pp. 1097-1110
    • Walkley, C.R.1
  • 42
    • 20244364979 scopus 로고    scopus 로고
    • Stroma-mediated dysregulation of myelopoiesis in mice lacking I kappa B alpha
    • Rupec, R.A. et al 2005. Stroma-mediated dysregulation of myelopoiesis in mice lacking I kappa B alpha. Immunity 22: 479-491.
    • (2005) Immunity , vol.22 , pp. 479-491
    • Rupec, R.A.1
  • 43
    • 77950862042 scopus 로고    scopus 로고
    • Bone progenitor dysfunction induces myelodysplasia and secondary leukaemia
    • Raaijmakers, M.H. et al 2010. Bone progenitor dysfunction induces myelodysplasia and secondary leukaemia. Nature 464: 852-857.
    • (2010) Nature , vol.464 , pp. 852-857
    • Raaijmakers, M.H.1
  • 44
    • 34250363611 scopus 로고    scopus 로고
    • Rb regulates interactions between hematopoietic stem cells and their bone marrow microenvironment
    • Walkley, C.R. et al 2007. Rb regulates interactions between hematopoietic stem cells and their bone marrow microenvironment. Cell 129: 1081-1095.
    • (2007) Cell , vol.129 , pp. 1081-1095
    • Walkley, C.R.1
  • 45
    • 0034660485 scopus 로고    scopus 로고
    • "Emergency" granulopoiesis in G-CSF-deficient mice in response to Candida albicans infection
    • Basu, S. et al 2000. "Emergency" granulopoiesis in G-CSF-deficient mice in response to Candida albicans infection. Blood 95: 3725-3733.
    • (2000) Blood , vol.95 , pp. 3725-3733
    • Basu, S.1
  • 46
    • 0031029557 scopus 로고    scopus 로고
    • Absence of granulocyte colony-stimulating factor signaling and neutrophil development in CCAAT enhancer binding protein alpha-deficient mice
    • Zhang, D.E. et al 1997. Absence of granulocyte colony-stimulating factor signaling and neutrophil development in CCAAT enhancer binding protein alpha-deficient mice. Proc. Natl. Acad. Sci. USA 94: 569-574.
    • (1997) Proc. Natl. Acad. Sci. USA , vol.94 , pp. 569-574
    • Zhang, D.E.1
  • 47
    • 10344230611 scopus 로고    scopus 로고
    • Enhancement of hematopoietic stem cell repopulating capacity and self-renewal in the absence of the transcription factor C/EBP alpha
    • Zhang, P. et al 2004. Enhancement of hematopoietic stem cell repopulating capacity and self-renewal in the absence of the transcription factor C/EBP alpha. Immunity 21: 853-863.
    • (2004) Immunity , vol.21 , pp. 853-863
    • Zhang, P.1
  • 48
    • 33745225494 scopus 로고    scopus 로고
    • C/EBPbeta is required for 'emergency' granulopoiesis
    • Hirai, H. et al 2006. C/EBPbeta is required for 'emergency' granulopoiesis. Nat. Immunol. 7: 732-739.
    • (2006) Nat. Immunol. , vol.7 , pp. 732-739
    • Hirai, H.1
  • 49
    • 0029024113 scopus 로고
    • Lymphoproliferative disorder and imbalanced T-helper response in C/EBP beta-deficient mice
    • Screpanti, I. et al 1995. Lymphoproliferative disorder and imbalanced T-helper response in C/EBP beta-deficient mice. EMBO J. 14: 1932-1941.
    • (1995) EMBO J. , vol.14 , pp. 1932-1941
    • Screpanti, I.1
  • 50
    • 79951698622 scopus 로고    scopus 로고
    • Dynamic variation in cycling of hematopoietic stem cells in steady state and inflammation
    • Takizawa, H. et al 2011. Dynamic variation in cycling of hematopoietic stem cells in steady state and inflammation. J. Exp. Med. 208: 273-284.
    • (2011) J. Exp. Med. , vol.208 , pp. 273-284
    • Takizawa, H.1
  • 51
    • 76249120134 scopus 로고    scopus 로고
    • Recognition of peptidoglycan from the microbiota by Nod1 enhances systemic innate immunity
    • Clarke, T.B. et al 2010. Recognition of peptidoglycan from the microbiota by Nod1 enhances systemic innate immunity. Nat. Med. 16: 228-231.
    • (2010) Nat. Med. , vol.16 , pp. 228-231
    • Clarke, T.B.1
  • 52
    • 27644567194 scopus 로고    scopus 로고
    • Germfree status of mice obtained by embryo transfer in an isolator environment
    • Inzunza, J. et al 2005. Germfree status of mice obtained by embryo transfer in an isolator environment. Lab. Anim. 39: 421-427.
    • (2005) Lab. Anim. , vol.39 , pp. 421-427
    • Inzunza, J.1
  • 53
    • 0032922567 scopus 로고    scopus 로고
    • Peripheral blood neutrophils of germ-free rats modified by in vivo granulocyte-colony-stimulating factor and exposure to natural environment
    • Ohkubo, T. et al 1999. Peripheral blood neutrophils of germ-free rats modified by in vivo granulocyte-colony-stimulating factor and exposure to natural environment. Scand. J. Immunol. 49: 73-77.
    • (1999) Scand. J. Immunol. , vol.49 , pp. 73-77
    • Ohkubo, T.1
  • 54
    • 34248155236 scopus 로고    scopus 로고
    • Mice lacking three myeloid colony-stimulating factors (G-CSF, GM-CSF, and M-CSF) still produce macrophages and granulocytes and mount an inflammatory response in a sterile model of peritonitis
    • Hibbs, M.L. et al 2007. Mice lacking three myeloid colony-stimulating factors (G-CSF, GM-CSF, and M-CSF) still produce macrophages and granulocytes and mount an inflammatory response in a sterile model of peritonitis. J. Immunol. 178: 6435-6443.
    • (2007) J. Immunol. , vol.178 , pp. 6435-6443
    • Hibbs, M.L.1
  • 55
    • 79960923112 scopus 로고    scopus 로고
    • Neutrophil clearance: when the party is over, clean-up begins
    • Bratton, D.L. & P.M. Henson. 2011. Neutrophil clearance: when the party is over, clean-up begins. Trends Immunol. 32: 350-357.
    • (2011) Trends Immunol. , vol.32 , pp. 350-357
    • Bratton, D.L.1    Henson, P.M.2
  • 56
    • 0034785868 scopus 로고    scopus 로고
    • Neutrophil maturation and activation determine anatomic site of clearance from circulation
    • Suratt, B.T. et al 2001. Neutrophil maturation and activation determine anatomic site of clearance from circulation. Am. J. Physiol Lung Cell Mol. Physiol. 281: L913-L921.
    • (2001) Am. J. Physiol Lung Cell Mol. Physiol. , vol.281
    • Suratt, B.T.1
  • 57
    • 0027057502 scopus 로고
    • Different populations of macrophages use either the vitronectin receptor or the phosphatidylserine receptor to recognize and remove apoptotic cells
    • Fadok, V.A. et al 1992. Different populations of macrophages use either the vitronectin receptor or the phosphatidylserine receptor to recognize and remove apoptotic cells. J. Immunol. 149: 4029-4035.
    • (1992) J. Immunol. , vol.149 , pp. 4029-4035
    • Fadok, V.A.1
  • 58
    • 53549133371 scopus 로고    scopus 로고
    • Neutrophil mobilization and clearance in the bone marrow
    • Furze, R.C. & S.M. Rankin. 2008. Neutrophil mobilization and clearance in the bone marrow. Immunology 125: 281-288.
    • (2008) Immunology , vol.125 , pp. 281-288
    • Furze, R.C.1    Rankin, S.M.2
  • 59
    • 0041427760 scopus 로고    scopus 로고
    • Apoptotic cells and innate immune stimuli combine to regulate macrophage cytokine secretion
    • Lucas, M. et al 2003. Apoptotic cells and innate immune stimuli combine to regulate macrophage cytokine secretion. J. Immunol. 171: 2610-2615.
    • (2003) J. Immunol. , vol.171 , pp. 2610-2615
    • Lucas, M.1
  • 60
    • 79953687375 scopus 로고    scopus 로고
    • The unexpected link between infection-induced apoptosis and a TH17 immune response
    • Brereton, C.F. & J.M. Blander. 2011. The unexpected link between infection-induced apoptosis and a TH17 immune response. J. Leukoc. Biol. 89: 565-576.
    • (2011) J. Leukoc. Biol. , vol.89 , pp. 565-576
    • Brereton, C.F.1    Blander, J.M.2
  • 61
    • 0034076567 scopus 로고    scopus 로고
    • Investigation of the effect of marathon running on leucocyte counts of subjects of different ethnic origins: relevance to the aetiology of ethnic neutropenia
    • Bain, B.J. et al 2000. Investigation of the effect of marathon running on leucocyte counts of subjects of different ethnic origins: relevance to the aetiology of ethnic neutropenia. Br. J. Haematol. 108: 483-487.
    • (2000) Br. J. Haematol. , vol.108 , pp. 483-487
    • Bain, B.J.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.