메뉴 건너뛰기




Volumn 4, Issue 5, 2012, Pages 439-446

Introduction to manifold learning

Author keywords

Diffusion maps; Dimensionality reduction; Isomap; Laplacian eigenmaps; Local linear embedding

Indexed keywords

DIFFUSION MAPS; DIMENSIONALITY REDUCTION; ISOMAP; LAPLACIAN EIGENMAPS; LOCAL LINEAR EMBEDDING;

EID: 84865312580     PISSN: 19395108     EISSN: 19390068     Source Type: Journal    
DOI: 10.1002/wics.1222     Document Type: Article
Times cited : (134)

References (28)
  • 1
    • 0034704229 scopus 로고    scopus 로고
    • A global geometric framework for nonlinear dimensionality reduction
    • Tenenbaum JB, de Silva V, Langford JC. A global geometric framework for nonlinear dimensionality reduction. Science 2000, 290:2319-2323.
    • (2000) Science , vol.290 , pp. 2319-2323
    • Tenenbaum, J.B.1    de Silva, V.2    Langford, J.C.3
  • 2
    • 0034704222 scopus 로고    scopus 로고
    • Nonlinear dimensionality reduction by locally linear embedding
    • Roweis ST, Saul LK. Nonlinear dimensionality reduction by locally linear embedding. Science 2000, 290:2323-2326.
    • (2000) Science , vol.290 , pp. 2323-2326
    • Roweis, S.T.1    Saul, L.K.2
  • 3
    • 84865335410 scopus 로고    scopus 로고
    • Spectral embedding methods for manifold learning
    • eds., chapter 1. Boca Raton, FL: CRC Press;
    • Izenman AJ. Spectral embedding methods for manifold learning. In: Ma Y, Fu Y, eds. Manifold Learning Theory and Applications, chapter 1. Boca Raton, FL: CRC Press; 2012, 1-36.
    • (2012) Manifold Learning Theory and Applications , pp. 1-36
    • Izenman, A.J.1    Ma, Y.2    Fu, Y.3
  • 4
    • 84880203756 scopus 로고    scopus 로고
    • Laplacian eigenmaps and spectral techniques for embedding and clustering
    • Belkin M, Niyogi P. Laplacian eigenmaps and spectral techniques for embedding and clustering. Adv Neural Inform Process Syst 2002, 14:585-591.
    • (2002) Adv Neural Inform Process Syst , vol.14 , pp. 585-591
    • Belkin, M.1    Niyogi, P.2
  • 5
    • 0037948870 scopus 로고    scopus 로고
    • Hessian eigenmaps: locally linear embedding techniques for high-dimensional data
    • Donoho D, Grimes C. Hessian eigenmaps: locally linear embedding techniques for high-dimensional data. Proc Natl Acad Sci 2003, 100:5591-5596.
    • (2003) Proc Natl Acad Sci , vol.100 , pp. 5591-5596
    • Donoho, D.1    Grimes, C.2
  • 7
    • 14544307975 scopus 로고    scopus 로고
    • Principal manifolds and nonlinear dimension reduction via local tangent space alignment
    • Zhang Z, Zha H. Principal manifolds and nonlinear dimension reduction via local tangent space alignment. SIAM J Sci Comput 2004, 26:313-338.
    • (2004) SIAM J Sci Comput , vol.26 , pp. 313-338
    • Zhang, Z.1    Zha, H.2
  • 14
    • 0043195269 scopus 로고    scopus 로고
    • Nonlinear factor analysis as a statistical method
    • Yalcin I, Amemiya Y. Nonlinear factor analysis as a statistical method. Statistical Science 2001, 16:275-294.
    • (2001) Statistical Science , vol.16 , pp. 275-294
    • Yalcin, I.1    Amemiya, Y.2
  • 16
    • 84899009769 scopus 로고    scopus 로고
    • Local versus global methods for nonlinear dimensionality reduction
    • Cambridge, MA: MIT Press;
    • De Silva V, Tenenbaum JB. Local versus global methods for nonlinear dimensionality reduction. Advances in Neural Information Processing Systems, vol. 15. Cambridge, MA: MIT Press; 2003, 705-712.
    • (2003) Advances in Neural Information Processing Systems , vol.15 , pp. 705-712
    • De Silva, V.1    Tenenbaum, J.B.2
  • 18
    • 84945709831 scopus 로고
    • Algorithm 97
    • 345.
    • Floyd RW. Algorithm 97. Commun ACM 1962, 5:345.
    • (1962) Commun ACM , vol.5
    • Floyd, R.W.1
  • 19
    • 34147120474 scopus 로고
    • A note on two problems in connection with graphs
    • Dijkstra EW. A note on two problems in connection with graphs. Numer Math 1959, 1:269-271.
    • (1959) Numer Math , vol.1 , pp. 269-271
    • Dijkstra, E.W.1
  • 20
    • 33745397832 scopus 로고    scopus 로고
    • From graph to manifold laplacian: the convergence rate
    • Singer A. From graph to manifold laplacian: the convergence rate. Appl Comput Harmonic Anal 2006, 21:128-134.
    • (2006) Appl Comput Harmonic Anal , vol.21 , pp. 128-134
    • Singer, A.1
  • 21
    • 70450207879 scopus 로고    scopus 로고
    • A random walks view of spectral segmentation. In Proceedings of the 8th International Workshop on Artificial Intelligence and Statistics (AISTATS). San Francisco, CA
    • Meila M, Shi J. A random walks view of spectral segmentation. In Proceedings of the 8th International Workshop on Artificial Intelligence and Statistics (AISTATS). San Francisco, CA, 2001, 92-97.
    • (2001) , pp. 92-97
    • Meila, M.1    Shi, J.2
  • 22
    • 33745342032 scopus 로고    scopus 로고
    • Diffusion maps, spectral clustering, and the reaction coordinates of dynamical systems
    • Nadler B, Lafon S, Coifman RR, Kevrekidis IG. Diffusion maps, spectral clustering, and the reaction coordinates of dynamical systems. Appl Comput Harmonic Anal 2006, 21:113-127.
    • (2006) Appl Comput Harmonic Anal , vol.21 , pp. 113-127
    • Nadler, B.1    Lafon, S.2    Coifman, R.R.3    Kevrekidis, I.G.4
  • 23
    • 0011778863 scopus 로고
    • Data analytic methods in multivariate statistical analysis
    • In:, ed. New York: Academic Press;.
    • Gnadesikan R, Wilk MB. Data analytic methods in multivariate statistical analysis. In: Krishnaiah PR, ed. Multivariate Analysis II. New York: Academic Press; 1969.
    • (1969) Multivariate Analysis II
    • Gnadesikan, R.1    Wilk, M.B.2    Krishnaiah, P.R.3
  • 25
    • 0026113980 scopus 로고
    • Nonlinear principal component analysis using autoassociative neural networks
    • Kramer MA. Nonlinear principal component analysis using autoassociative neural networks. AIChE J 1991, 37:233-243.
    • (1991) AIChE J , vol.37 , pp. 233-243
    • Kramer, M.A.1
  • 26
    • 0347243182 scopus 로고    scopus 로고
    • Nonlinear component analysis as a kernel eigenvalue problem
    • Schölkopf B, Smola AJ, Muller K-R. Nonlinear component analysis as a kernel eigenvalue problem. Neural Comput 1998, 10:1299-1319.
    • (1998) Neural Comput , vol.10 , pp. 1299-1319
    • Schölkopf, B.1    Smola, A.J.2    Muller, K.-R.3
  • 27
    • 84865310178 scopus 로고    scopus 로고
    • A kernel view of the dimensionality reduction of manifolds, Technical Report TR-110. Germany: Max Planck Institute für biologische Kybernetik
    • Ham J, Lee DD, Mika S, Schölkopf B. A kernel view of the dimensionality reduction of manifolds, Technical Report TR-110. Germany: Max Planck Institute für biologische Kybernetik, 2003.
    • (2003)
    • Ham, J.1    Lee, D.D.2    Mika, S.3    Schölkopf, B.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.