-
1
-
-
0034704229
-
A global geometric framework for nonlinear dimensionality reduction
-
Tenenbaum JB, de Silva V, Langford JC. A global geometric framework for nonlinear dimensionality reduction. Science 2000, 290:2319-2323.
-
(2000)
Science
, vol.290
, pp. 2319-2323
-
-
Tenenbaum, J.B.1
de Silva, V.2
Langford, J.C.3
-
2
-
-
0034704222
-
Nonlinear dimensionality reduction by locally linear embedding
-
Roweis ST, Saul LK. Nonlinear dimensionality reduction by locally linear embedding. Science 2000, 290:2323-2326.
-
(2000)
Science
, vol.290
, pp. 2323-2326
-
-
Roweis, S.T.1
Saul, L.K.2
-
3
-
-
84865335410
-
Spectral embedding methods for manifold learning
-
eds., chapter 1. Boca Raton, FL: CRC Press;
-
Izenman AJ. Spectral embedding methods for manifold learning. In: Ma Y, Fu Y, eds. Manifold Learning Theory and Applications, chapter 1. Boca Raton, FL: CRC Press; 2012, 1-36.
-
(2012)
Manifold Learning Theory and Applications
, pp. 1-36
-
-
Izenman, A.J.1
Ma, Y.2
Fu, Y.3
-
4
-
-
84880203756
-
Laplacian eigenmaps and spectral techniques for embedding and clustering
-
Belkin M, Niyogi P. Laplacian eigenmaps and spectral techniques for embedding and clustering. Adv Neural Inform Process Syst 2002, 14:585-591.
-
(2002)
Adv Neural Inform Process Syst
, vol.14
, pp. 585-591
-
-
Belkin, M.1
Niyogi, P.2
-
5
-
-
0037948870
-
Hessian eigenmaps: locally linear embedding techniques for high-dimensional data
-
Donoho D, Grimes C. Hessian eigenmaps: locally linear embedding techniques for high-dimensional data. Proc Natl Acad Sci 2003, 100:5591-5596.
-
(2003)
Proc Natl Acad Sci
, vol.100
, pp. 5591-5596
-
-
Donoho, D.1
Grimes, C.2
-
7
-
-
14544307975
-
Principal manifolds and nonlinear dimension reduction via local tangent space alignment
-
Zhang Z, Zha H. Principal manifolds and nonlinear dimension reduction via local tangent space alignment. SIAM J Sci Comput 2004, 26:313-338.
-
(2004)
SIAM J Sci Comput
, vol.26
, pp. 313-338
-
-
Zhang, Z.1
Zha, H.2
-
8
-
-
84864071145
-
Diffusion maps, spectral clustering, and eigenfunctions of fokker-planck operators
-
Cambridge, MA: MIT Press;
-
Nadler B, Lafon S, Coifman RR, Kevrekidis IG. Diffusion maps, spectral clustering, and eigenfunctions of fokker-planck operators. Advances in Neural Information Processing Systems, vol, 18. Cambridge, MA: MIT Press; 2005, 955-962.
-
(2005)
Advances in Neural Information Processing Systems
, vol.18
, pp. 955-962
-
-
Nadler, B.1
Lafon, S.2
Coifman, R.R.3
Kevrekidis, I.G.4
-
11
-
-
53949100479
-
-
eds. New York, NY: Springer;.
-
Gorban AN, Kegl B, Wunsch DC, Zonovyev A, eds. Principal Manifolds for Data Visualization and Dimensionality Reduction. New York, NY: Springer; 2008.
-
(2008)
Principal Manifolds for Data Visualization and Dimensionality Reduction
-
-
Gorban, A.N.1
Kegl, B.2
Wunsch, D.C.3
Zonovyev, A.4
-
14
-
-
0043195269
-
Nonlinear factor analysis as a statistical method
-
Yalcin I, Amemiya Y. Nonlinear factor analysis as a statistical method. Statistical Science 2001, 16:275-294.
-
(2001)
Statistical Science
, vol.16
, pp. 275-294
-
-
Yalcin, I.1
Amemiya, Y.2
-
16
-
-
84899009769
-
Local versus global methods for nonlinear dimensionality reduction
-
Cambridge, MA: MIT Press;
-
De Silva V, Tenenbaum JB. Local versus global methods for nonlinear dimensionality reduction. Advances in Neural Information Processing Systems, vol. 15. Cambridge, MA: MIT Press; 2003, 705-712.
-
(2003)
Advances in Neural Information Processing Systems
, vol.15
, pp. 705-712
-
-
De Silva, V.1
Tenenbaum, J.B.2
-
17
-
-
1942514150
-
Unsupervised learning of curved manifolds
-
New York: Springer;
-
De Silva V, Tenenbaum JB. Unsupervised learning of curved manifolds. In: Denison DD, Hansen MH, Holmes CC, Mallick B, Yu B, eds. Nonlinear Estimation and Classification, vol. 171. New York: Springer; 2003, 453-466.
-
(2003)
Nonlinear Estimation and Classification
, vol.171
, pp. 453-466
-
-
De Silva, V.1
Tenenbaum, J.B.2
Denison, D.D.3
Hansen, M.H.4
Holmes, C.C.5
Mallick, B.6
Yu, B.7
-
18
-
-
84945709831
-
Algorithm 97
-
345.
-
Floyd RW. Algorithm 97. Commun ACM 1962, 5:345.
-
(1962)
Commun ACM
, vol.5
-
-
Floyd, R.W.1
-
19
-
-
34147120474
-
A note on two problems in connection with graphs
-
Dijkstra EW. A note on two problems in connection with graphs. Numer Math 1959, 1:269-271.
-
(1959)
Numer Math
, vol.1
, pp. 269-271
-
-
Dijkstra, E.W.1
-
20
-
-
33745397832
-
From graph to manifold laplacian: the convergence rate
-
Singer A. From graph to manifold laplacian: the convergence rate. Appl Comput Harmonic Anal 2006, 21:128-134.
-
(2006)
Appl Comput Harmonic Anal
, vol.21
, pp. 128-134
-
-
Singer, A.1
-
21
-
-
70450207879
-
-
A random walks view of spectral segmentation. In Proceedings of the 8th International Workshop on Artificial Intelligence and Statistics (AISTATS). San Francisco, CA
-
Meila M, Shi J. A random walks view of spectral segmentation. In Proceedings of the 8th International Workshop on Artificial Intelligence and Statistics (AISTATS). San Francisco, CA, 2001, 92-97.
-
(2001)
, pp. 92-97
-
-
Meila, M.1
Shi, J.2
-
22
-
-
33745342032
-
Diffusion maps, spectral clustering, and the reaction coordinates of dynamical systems
-
Nadler B, Lafon S, Coifman RR, Kevrekidis IG. Diffusion maps, spectral clustering, and the reaction coordinates of dynamical systems. Appl Comput Harmonic Anal 2006, 21:113-127.
-
(2006)
Appl Comput Harmonic Anal
, vol.21
, pp. 113-127
-
-
Nadler, B.1
Lafon, S.2
Coifman, R.R.3
Kevrekidis, I.G.4
-
23
-
-
0011778863
-
Data analytic methods in multivariate statistical analysis
-
In:, ed. New York: Academic Press;.
-
Gnadesikan R, Wilk MB. Data analytic methods in multivariate statistical analysis. In: Krishnaiah PR, ed. Multivariate Analysis II. New York: Academic Press; 1969.
-
(1969)
Multivariate Analysis II
-
-
Gnadesikan, R.1
Wilk, M.B.2
Krishnaiah, P.R.3
-
25
-
-
0026113980
-
Nonlinear principal component analysis using autoassociative neural networks
-
Kramer MA. Nonlinear principal component analysis using autoassociative neural networks. AIChE J 1991, 37:233-243.
-
(1991)
AIChE J
, vol.37
, pp. 233-243
-
-
Kramer, M.A.1
-
26
-
-
0347243182
-
Nonlinear component analysis as a kernel eigenvalue problem
-
Schölkopf B, Smola AJ, Muller K-R. Nonlinear component analysis as a kernel eigenvalue problem. Neural Comput 1998, 10:1299-1319.
-
(1998)
Neural Comput
, vol.10
, pp. 1299-1319
-
-
Schölkopf, B.1
Smola, A.J.2
Muller, K.-R.3
-
27
-
-
84865310178
-
-
A kernel view of the dimensionality reduction of manifolds, Technical Report TR-110. Germany: Max Planck Institute für biologische Kybernetik
-
Ham J, Lee DD, Mika S, Schölkopf B. A kernel view of the dimensionality reduction of manifolds, Technical Report TR-110. Germany: Max Planck Institute für biologische Kybernetik, 2003.
-
(2003)
-
-
Ham, J.1
Lee, D.D.2
Mika, S.3
Schölkopf, B.4
-
28
-
-
2942555399
-
Nonlinear manifold learning for data stream
-
eds., Florida: SIAM;
-
Law MHC, Zhang N, Jain A. Nonlinear manifold learning for data stream. In: Berry MW, Dayal U, Kamath C, Skillicorn D, eds. Proceedings of the Fourth SIAM International Conference in Data Mining, vol. 4. Florida: SIAM; 2004, 33-44.
-
(2004)
Proceedings of the Fourth SIAM International Conference in Data Mining
, vol.4
, pp. 33-44
-
-
Law, M.H.C.1
Zhang, N.2
Jain, A.3
Berry, M.W.4
Dayal, U.5
Kamath, C.6
Skillicorn, D.7
|